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Heuristics

nearest neighbor for TSP:
® simple construction heuristic
® worst-case approximation ratio (metric): O(logn)
® experimental: &~ 1.25
® average-case performance?



Why random metric spaces?

o/. o

random in [0, 1]? independent edge lengths



Random shortest paths = First-passage percolation

@ edge weights: ® shortest paths w.r.t. weights
exponentially distributed,
independent
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@ Properties of RSP



Exponential distribution — Properties

Exp(.) A
e density: Le ** for x >0
e CDF:1—e M forx>0
® expected value: 1/4 0
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e density: Le ** for x >0
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Exponential distribution — Properties

Exp(A) 2
e density: Le ** for x >0
e CDF:1—e M forx>0
® expected value: 1/4 0

memorylessness (R ~ Exp(1))
o Mx+D)

=P(R > x)

minimum (R1 s Ry ~ EXp(A); M= min{R1 S Rk})

k
P(M > x) = []P(Ri > x) = (e **)k = e~ (k)
i=1
= M ~ Exp(Ak)



What is the typical distance in RSP?

What is E(d(u, v))?



What is the typical distance in RSP?

What is E(d(u, v))?

© logn
01

® 1/vn
O logn/n
O 1/n



Distribution of RSP

(Ho=X17)
® [, =distance to k-th closest vertex
e [{=0
e [, =Exp(n—1)
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Distribution of RSP

(Ho=X17)
Ly = distance to k-th closest vertex
Ly=0
Lo, =Exp(n—1)
Lit1 = Lk +Exp((n—k) - k)
Ly =YK Exp((n— i)-i)
E(Le) = LS gy = Eict 5 (7 + 79)




Distribution of RSP
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L, = distance to k-th closest vertex
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k
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Distribution of RSP

(Hh=X"1 1)
L, = distance to k-th closest vertex
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Ly = Exp(nf 1)
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Distribution of RSP

(Hh=Y7 1)
L, = distance to k-th closest vertex
Ly=0
Ly = Exp(nf 1)
Lit1 = Lk +Exp((n—k) - k)
L=y Exp((n— i)-i)
k
( ) ZI 1 (n1/)/ Z4! 11% (17 %)
= n (Hk—1 +Hp—1— Hn—k)

Theorem (Janson 1999)

E(max, d(u,v)) =E(Ly) = 2.t 2. 10
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Distribution of RSP

(Hh=Y7 1)
L, = distance to k-th closest vertex
L1=0
Ly = Exp(nf 1)
Lit1 = Lk +Exp((n—k) - k)
L=y Exp((n— i)-i)
k
( ) Zl 1 (n1/)/ Z/ 1115 (17 ﬁ)
= n (Hk—1 +Hp—1— Hn—k)

Theorem (Janson 1999)
E(d(u,v)) =1.
E(max, d(u,v)) =E(L,) =2-
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Expected edge length

Theorem (Janson 1999)
E(d(u,v)) = 2=t

n—1

previous slide: E(Lx) = 1 - (Hp—1 + Hk—1 — Hn—x)

n

E(d(u,v)) = —— Y E(Ly)

k=2
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Theorem (Janson 1999)
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Expected edge length

Theorem (Janson 1999)
E(d(u,v)) = 75

previous slide: E(Lx) = 1 - (Hn—1 + Hx—1 — Hn k)

n

11 - Y E(Lk)

k=2

E(d(u,v)) =

n
1

1 n
=—-H,_ _. Hi_1 — H,_
n n1+n-(n—1) k;2 k—1 n—k



Expected edge length

Theorem (Janson 1999)
E(d(u,v)) = 2=t

n—1

Proof.
previous slide: E(Lx) = 1 - (Hp—1 + Hk—1 — Hn—x)

n

E(d(u,v)) = — Y E(Lk)
k=2
_ L iH —H,
- n n—1 n.(n_1) = k—1 n—k
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Expected edge length

Theorem (Janson 1999)
E(d(u,v)) = 2=t ~ I

n

previous slide: E(Lx) = 1 - (Hp—1 + Hk—1 — Hn—x)

E(d(u,v)) = — Y E(Lk)
k=2
_ L iH H
1 1 1
=—-H,_ Hn_ — - H,_
n n1+n( _1) n—1 1 n—1



Sums of exponential random variables

Lemma

X~ YT Exp(di), thenP(X <t)=(1— e—/lt)m_

® Y, ~ Exp(A) independently, order statistics Yoy < Ye) <. < Y

® Yy — Y(i-1) ~ Exp(4/) (memorylessness)
® X has same distribution as max{ Ys,..., Y} = Y(m)



Sums of exponential random variables

X~ YT Exp(di), thenP(X <t)=(1— e—/lt)m_

® Y, ~ Exp(A) independently, order statistics Yy <Y <. <Y
® Yy — Y(i-1) ~ Exp(4/) (memorylessness)

® X has same distribution as max{ Ys,..., Y} = Y(m)
O
Lemma
k—1 k—1 Kk—1
Y Exp(ni) < Y Exp((n—i)i) < ) Exp((n—k)i)
i=1 i=1 i=1
—_——

Lk~



Concentration of L,

Lemma

(1 —e_(n—k)t)k S ]P)(Lk S t) S (1 _e—nt)k

o X~ YT Exp(Ai), thenP(X <t)=(1— e—M)m.
o Y Exp(ni) < Ly < YK Exp((n— k)i)




Concentration of L,

Lemma
(1 —e—(n—k)t)k <P(Lg < 1) < (1 _e—nt)

k

Proof.

o X~ YT Exp(Ai), thenP(X <t)=(1— e—/lt)m.
o YT Exp(ni) < Ly < Y Exp((n—k)i)

Corollary
P(Lk > t) <1- (1 — e_(n—k)t)kg 1_ (1 . ke—(n—k)t) _ ke_(”_k)t

‘ ‘ O

Proof.
(1—x) >1—xy




Concentration of L,

Lemma
(1—e () <p(L, < 1) < (1—e )"

Proof.

o X~ YT Exp(Ai), thenP(X <t)=(1— e—/lt)m.
o YT Exp(ni) < Ly < Y Exp((n—k)i)

‘ D

Corollary
P(Le>t)<1—(1- e,(n,k),>k§ 1— (1 ke~ (")) = kg~ (n—h)t

Proof.
(1—x)Y>1—xy




Concentration of L,

Lemma

(1 —e_(n—k)f)k S ]P)(Lk S t) S (1 _e—nt)k

Proof.

o X~ YT Exp(Ai), thenP(X <t)=(1— e—/lt)m.
o YT Exp(ni) < Ly < Y Exp((n—k)i)

‘ D

Corollary
P(Lx>1) <1 - (1 - ei(nik)t>k§ = (1 - ke*(”*k)f) — ke~ (n—k)t

Proof.
(1=x) >1—xy




Balls around nodes

Corollary
P(Lx > t) < ke~ ("Rt

ball around v:

Bi(v)={ue V|d(v,u) <t}

Corollary
P(|B(v)| < k) =P(Lx > t) < ke~ (k)




Global structure

Lemma

“P(v has < e™ neighbors within distance t) < ™"

, ... loglogn 1
example: P v has < log n neighbors within p <

~ logn
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P components of size e and diameter O(t)
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Global structure

Lemma

“P(v has < e™ neighbors within distance t) < ™"

n ,

P components of size e and diameter O(t)
n

e orphans

is this really possible without leftover vertices?



Global structure

Lemma

“P(v has < e™ neighbors within distance t) < ™"

e greedily pick vertex v with B;(v) > e™ without marked neighbor
® mark all vertices in B;(v) and keep going

® assign remaining vertices to some cluster or keep them as orphans



@ Heuristics for TSP
Nearest neighbor
Insertion heuristics



Optimal TSP tour

E(length of optimal TSP tour) = (1) (in fact, ©(1))




Optimal TSP tour

E(length of optimal TSP tour) = (1) (in fact, ©(1))

® length of shortest edge at v does not change under shortest path

® length of shortest edge at v ~ Exp(n—1)

e E(length of shortest edge at v) = -

® linearity of expectation



Optimal TSP tour

E(length of optimal TSP tour) = (1) (in fact, ©(1))

® length of shortest edge at v does not change under shortest path

® length of shortest edge at v ~ Exp(n—1)

E(length of shortest edge at v) = 1=

® linearity of expectation
® holds even without RSP
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Average-case nearest neighbor without RSP

What is the expected tour length?

distances independent, Exp(1), no RSP, no triangle inequality



Average-case nearest neighbor without RSP

What is the expected tour length?

distances independent, Exp(1), no RSP, no triangle inequality

o1
@ logn
® Vn
On



Average-case nearest neighbor without RSP

What is the expected tour length?

distances independent, Exp(1), no RSP, no triangle inequality

e first edge ~ Exp(n—1)



Average-case nearest neighbor without RSP

What is the expected tour length?

distances independent, Exp(1), no RSP, no triangle inequality

e first edge ~ Exp(n—1)
® k-th edge ~ Exp(n— k)
® second to last edge ~ Exp(1)



Average-case nearest neighbor without RSP

What is the expected tour length?

distances independent, Exp(1), no RSP, no triangle inequality

first edge ~ Exp(n—1)

k-th edge ~ Exp(n— k)
second to last edge ~ Exp(1)
E(last edge) = -

n—1



Average-case nearest neighbor without RSP

What is the expected tour length?

distances independent, Exp(1), no RSP, no triangle inequality

first edge ~ Exp(n—1)

k-th edge ~ Exp(n— k)
second to last edge ~ Exp(1)
E(last edge) = "5

» E(NN without RSP) = H,_1 + -5 = ©(logn)
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Nearest neighbor for TSP

LN
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Nearest neighbor for TSP

e <1 long outgoing edge per component/orphan
o ti=1fori=1,2,3,...

long edges for phase i are estimated as < t;; 1
o < ﬁ = e 'n edges of length between t; and fit1

tour length < Y e 'nti1 = O(1)



Nearest neighbor for TSP

o < 1 long outgoing edge per component/orphan
o ti=1fori=1,2,3,...

long edges for phase i are estimated as < t;; 1
o < ﬁ = e 'n edges of length between t; and fit1

e tour length < Y% o e 'nti 1 = O(1)

nearest neighbor: expected length O(1), expected approximation ratio O(1)
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Insertion heuristics

® every component: cheap insertion from second point on

® costs > f only once per component

every insertion heuristic achieves expected ratio O(1)




@ Facility location problem



k-center
e find C C V with |C| = k ’\/L'

* minimize ) mig(d(v,c))

vev 6€



k-center
e find C C V with |C| = k ’\/L'

* minimize ) mig(d(v,c))

vev 6€

e fixed C

® [y41,...,L,: distancesto C

® [4,....Lxk=0

® ti=Li1—L=Exp(j-(n—)))

n—1 n—1

costs = i Li=Y (n—=j)-t=Y Exp(j)
j=k

i=k+1 j=k



k-center
e find C C V with |C| = k ’\/L'

* minimize ) mig(d(v,c))

vev 6€

o fixed C
® [y41,...,L,: distancesto C
® [i,....Lk=0
® ti=Li1—Li=Exp(j-(n—}))
n n—1 n—1
costs= Y Li=) (n—j)-t=) Exp(j)
i=k+1 j=k J=K

Theorem

any solution is a (1 -+ o(1))-approximation for k = O(n'~¢)



Facility location problem
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S

veC veV



Facility location problem

e fndCCV
* minimize ) f,+ ) m|g (d(v,c))

veC veV
o i <fh<...<f, (adversarial)

k _
1
e opening k cheapest facilities: E(costs) Z Z H



Facility location problem

e fndCCV
* minimize ) f,+ ) m|g (d(v,c))

veC veV
o i <fh<...<f, (adversarial)

k _
1
opening k cheapest facilities: E(costs) Z Z H

ALG: choose k = max{i | fi < 5} facilities



Facility location problem

e fndCCV
* minimize ) f,+ ) m|g (d(v,c))

veC veV
o i <fh<...<f, (adversarial)

k —
14
® opening k cheapest facilities: E(costs) -
pening p liti ; ; /
® ALG: choose k = max{i | f; < 1+ } facilities
® more challenging: lower bounds for optimal solution

® Cauchy—Schwarz for “decoupling”:
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Facility location problem

e fndCCV
* minimize ) f,+ ) m|g (d(v,c))

veC veV
o i <fh<...<f, (adversarial)
i 1
i

i=k

® opening k cheapest facilities: E(costs)

||M»

® ALG: choose k = max{i | fi < - 1}facmtles
® more challenging: lower bounds for optimal solution

® Cauchy—Schwarz for “decoupling”:
ALG 1
E < 1 [E(ALG?
(OF’T> \/ ( )E <OF’T2>

ALG is a (14 o(1))-approximation for k = o(n)
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exponential uniform

can we transfer the results to uniform/arbitrary distributions?
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General probability distributions

exponential uniform

can we transfer the results to uniform/arbitrary distributions?

® observation: distances decrease with n
 density f: differentiable in (0, )

e P(weight < x) = x + o(x)
(every distribution is approximately uniform in (0, €))

» results carry over, scale by 1+ 0(1)



@® RSP with non-complete graphs
Random graphs
2-opt on sparse graphs
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® unbounded doubling dimension
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RSP generated from non-complete graphs

* balls grow extremely fast: |B,(v)| =|{ue V|d(v,u) <t}|~e™
® unbounded doubling dimension

® RSP metrics can be generated from any connected graph

(the metric is always complete!)
» use non-complete/sparse graphs!

® challenges:

® unknown structure

® |ack of symmetry



RSP with Gp, p random graphs

Gn~p
® nvertices

* P({u,v} € E) = pindependently
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* P({u,v} € E) = pindependently

RSP on G, is a two-stage random process
@ draw random graph — connected w.h.p.
@® draw edge weights for existing edges

@ shortest paths



RSP with Gp, p random graphs

Gn~p
® nvertices

* P({u,v} € E) = pindependently

RSP on G, is a two-stage random process
@ draw random graph — connected w.h.p.
@® draw edge weights for existing edges

@ shortest paths

can we reuse results for complete graphs?



RSP with Gp, p — coupling

Gnp With Exp(1)
~ Gnp with U(0,1)
= complete graph with U(0,1/p), remove edges of weight > 1
= complete graph with U(0, 1) (scaling, weight > p is never used)

~ complete graph with Exp(1)



RSP with Gp, p — coupling

Gnp With Exp(1)
~ Gnp with U(0,1)
= complete graph with U(0,1/p), remove edges of weight > 1
= complete graph with U(0, 1) (scaling, weight > p is never used)

~ complete graph with Exp(1)

all “sum of lengths” results scale by 1/p

“approximation results for complete graphs also hold for G, ,”
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2-opt heuristic for TSP — approximation ratio

worst-case: O(+/n)

RSP on complete graphs: O(logn) ~~ trivial — why?

RSP on sparse graph: O(1) ~ now



2-opt heuristic for TSP — approximation ratio

worst-case: O(+/n)

RSP on complete graphs: O(logn) ~~ trivial — why?
maximum edge ~ 3- ' & optimal tour = (1)

RSP on sparse graph: O(1) ~ now



2-opt — RSP in sparse graphs

® sparse graph: m = ©(n) edges
® Si: sum of k lightest edge weights
o S, <TSP
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2-opt — RSP in sparse graphs

® sparse graph: m = ©(n) edges
® Si: sum of k lightest edge weights
* S, <TSP

Lemma

E(Sk) = Q(k?/n)

> TSP =Q(n)



2-opt — RSP in sparse graphs

E(Si) = (k2/n)

® wi,We,...: edge weigths in increasing order

® wi ~ Exp(m)

® Wiy —w; ~ Exp(m—i) ~ w; ~ ¥~ Exp(m—j)

* Sk=Yi Wi~ ,"(701(/(—!') Exp(m— ) = L EXP(TI)
Z Exp( )

k2

E(Sk) > =



Approximation ratio of 2-opt in sparse graphs

® P(,v) = edges of original graph on shortest u-v path

® edges are considered directed for P,

Lemma

e,f € T with e # f and PN Pr # 0, then T is not 2-optimal
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® P(,v) = edges of original graph on shortest u-v path

® edges are considered directed for P,

Lemma

e,f € T with e # f and PN Pr # 0, then T is not 2-optimal

® upper bound for 2-optimal tour: twice the sum of edge weights

® constant fraction of all edge weights appears in optimal tour



Approximation ratio of 2-opt in sparse graphs

® P(,v) = edges of original graph on shortest u-v path

® edges are considered directed for P,

Lemma

e,f € T with e # f and PN Pr # 0, then T is not 2-optimal

® upper bound for 2-optimal tour: twice the sum of edge weights
® constant fraction of all edge weights appears in optimal tour

e 2-optimal tours have length O(n)
global optimum has length Q(n)

2-opt on sparse graphs achieves approximation ratio O(1)




@ Conclusions



Summary & open problems

summary
® RSP models random metrics
® TSP: nearest neighbor, insertion, 2-opt

e trivial algorithm for facility location & k-center
(consider as concentration of measure)

® some first results on incomplete graphs

open problems
® more for sparse graphs
® directed graphs

® other models for random metrics?
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