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Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?
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Why random metric spaces?
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Random shortest paths = First-passage percolation

1 edge weights:
exponentially distributed,
independent

2 shortest paths w.r.t. weights
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Exponential distribution – Properties

Exp(λ )

• density: λe−λx for x ≥ 0
• CDF: 1−e−λx for x ≥ 0
• expected value: 1/λ

t

λ

0

memorylessness (R ∼ Exp(λ ))

P(R ≥ t +x | R ≥ t) =
e−λ(x+t)

e−λ t
= P(R ≥ x)

minimum (R1, . . . ,Rk ∼ Exp(λ ); M =min{R1, . . . ,Rk})

P(M ≥ x) =
k

∏
i=1

P(Ri ≥ x) = (e−λx)k = e−(λk)x

⇒ M ∼ Exp(λk)
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Question

What is the typical distance in RSP?

What is E
(
d(u,v)

)
?

1 logn

2 1

3 1/
√

n

4 logn/n

5 1/n
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Distribution of RSP

L2

L3

≥ L3−
L2

≥ L3

(Hn = ∑
n
i=1

1
i )

• Lk = distance to k -th closest vertex

• L1 = 0

• L2 = Exp(n−1)

• Lk+1 = Lk +Exp
(
(n−k) ·k

)
• Lk = ∑

k−1
i=1 Exp

(
(n− i) · i

)
• E(Lk) = ∑

k−1
i=1

1
(n−i)·i = ∑

k−1
i=1

1
n · (

1
i +

1
n−i )

E(Lk)

= 1
n ·

(
Hk−1 +Hn−1 −Hn−k

)
Theorem (Janson 1999)

E
(
d(u,v)

)
= 1 · Hn−1

n−1 ≈ 1 · lnn
n

E
(
maxv d(u,v)

)
= E

(
Ln) = 2 · Hn−1

n ≈ 2 · lnn
n

E
(
maxu,v d(u,v)

)
≈ 3 · lnn

n
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Sums of exponential random variables

Lemma

X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

Proof.

• Yi ∼ Exp(λ ) independently, order statistics Y(1) ≤ Y(2) ≤ . . .≤ Y(m)

• Y(i)−Y(i−1) ∼ Exp(λ i) (memorylessness)
• X has same distribution as max{Y1, . . . ,Ym}= Y(m)

Lemma
k−1

∑
i=1

Exp(ni)≤
k−1

∑
i=1

Exp((n− i)i)︸ ︷︷ ︸
Lk∼

≤
k−1

∑
i=1

Exp((n−k)i)
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Concentration of Lk

Lemma(
1−e−(n−k)t

)k ≤ P(Lk ≤ t)≤
(
1−e−nt

)k

Proof.

• X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

• ∑
k−1
i=1 Exp(ni)≤ Lk ≤ ∑

k−1
i=1 Exp((n−k)i)

Corollary

P(Lk > t)≤1−
(
1−e−(n−k)t

)k≤ 1−
(
1−ke−(n−k)t

)
= ke−(n−k)t

Proof.

(1−x)y ≥ 1−xy



Concentration of Lk

Lemma(
1−e−(n−k)t

)k ≤ P(Lk ≤ t)≤
(
1−e−nt

)k

Proof.

• X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

• ∑
k−1
i=1 Exp(ni)≤ Lk ≤ ∑

k−1
i=1 Exp((n−k)i)

Corollary

P(Lk > t)≤1−
(
1−e−(n−k)t

)k≤ 1−
(
1−ke−(n−k)t

)
= ke−(n−k)t

Proof.

(1−x)y ≥ 1−xy



Concentration of Lk

Lemma(
1−e−(n−k)t

)k ≤ P(Lk ≤ t)≤
(
1−e−nt

)k

Proof.

• X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

• ∑
k−1
i=1 Exp(ni)≤ Lk ≤ ∑

k−1
i=1 Exp((n−k)i)

Corollary

P(Lk > t)≤1−
(
1−e−(n−k)t

)k≤ 1−
(
1−ke−(n−k)t

)
= ke−(n−k)t

Proof.

(1−x)y ≥ 1−xy



Concentration of Lk

Lemma(
1−e−(n−k)t

)k ≤ P(Lk ≤ t)≤
(
1−e−nt

)k

Proof.

• X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

• ∑
k−1
i=1 Exp(ni)≤ Lk ≤ ∑

k−1
i=1 Exp((n−k)i)

Corollary

P(Lk > t)≤1−
(
1−e−(n−k)t

)k≤ 1−
(
1−ke−(n−k)t

)
= ke−(n−k)t

Proof.

(1−x)y ≥ 1−xy



Balls around nodes

Corollary

P(Lk > t)≤ ke−(n−k)t

ball around v :

Bt(v) = {u ∈ V | d(v ,u)≤ t}

Corollary

P
(
|Bt(v)|< k

)
= P

(
Lk > t

)
≤ ke−(n−k)t



Global structure

Lemma

“P
(
v has < ent neighbors within distance t

)
≤ e−nt ”

example: P
(

v has < logn neighbors within
log logn

n

)
≤ 1

logn
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is this really possible without leftover vertices?
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Global structure

Lemma

“P
(
v has < ent neighbors within distance t

)
≤ e−nt ”

• greedily pick vertex v with Bt(v)≥ ent without marked neighbor

• mark all vertices in Bt(v) and keep going

• assign remaining vertices to some cluster or keep them as orphans
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Optimal TSP tour

Theorem

E(length of optimal TSP tour) = Ω(1) (in fact, Θ(1))

• length of shortest edge at v does not change under shortest path

• length of shortest edge at v ∼ Exp(n−1)

• E(length of shortest edge at v) = 1
n−1

• linearity of expectation

• holds even without RSP
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Average-case nearest neighbor without RSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

1 1

2 logn
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Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)
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k -center

• find C ⊆ V with |C|= k

• minimize ∑
v∈V

min
c∈C

(
d(v ,c)

)

L3

≥ L3

• fixed C
• Lk+1, . . . ,Ln: distances to C
• L1, . . . ,Lk = 0
• tj = Lj+1 −Lj = Exp

(
j · (n− j)

)
costs =

n

∑
i=k+1

Li =
n−1

∑
j=k

(n− j) · tj =
n−1

∑
j=k

Exp
(
j
)

Theorem

any solution is a
(
1+o(1)

)
-approximation for k = O(n1−ε)
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Facility location problem

• find C ⊆ V

• minimize ∑
v∈C

fv + ∑
v∈V

min
c∈C

(
d(v ,c)

)

• f1 ≤ f2 ≤ . . .≤ fn (adversarial)

• opening k cheapest facilities: E(costs) =
k

∑
i=1

fi +
n−1

∑
i=k

1
i

• ALG: choose k =max{i | fi < 1
i−1} facilities

• more challenging: lower bounds for optimal solution

• Cauchy–Schwarz for “decoupling”:

E
(

ALG
OPT

)
≤

√
E(ALG2) ·E

(
1

OPT2

)

Theorem

ALG is a
(
1+o(1)

)
-approximation for k = o(n)
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General probability distributions
exponential

1

0
0 1

uniform

1

0
0 1

can we transfer the results to uniform/arbitrary distributions?

• observation: distances decrease with n

• density f : differentiable in (0,ε)

• P(weight ≤ x) = x +o(x)

(every distribution is approximately uniform in (0,ε))

• results carry over, scale by 1±o(1)
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RSP generated from non-complete graphs

• balls grow extremely fast:
∣∣Bt(v)

∣∣= ∣∣{u ∈ V | d(v ,u)≤ t
}∣∣≈ ent

• unbounded doubling dimension

• RSP metrics can be generated from any connected graph

(the metric is always complete!)

• use non-complete/sparse graphs!

• challenges:

• unknown structure
• lack of symmetry



RSP generated from non-complete graphs

• balls grow extremely fast:
∣∣Bt(v)

∣∣= ∣∣{u ∈ V | d(v ,u)≤ t
}∣∣≈ ent

• unbounded doubling dimension

• RSP metrics can be generated from any connected graph

(the metric is always complete!)

▶ use non-complete/sparse graphs!

• challenges:

• unknown structure
• lack of symmetry



RSP generated from non-complete graphs

• balls grow extremely fast:
∣∣Bt(v)

∣∣= ∣∣{u ∈ V | d(v ,u)≤ t
}∣∣≈ ent

• unbounded doubling dimension

• RSP metrics can be generated from any connected graph

(the metric is always complete!)

▶ use non-complete/sparse graphs!

• challenges:

• unknown structure
• lack of symmetry



RSP with Gn,p random graphs

Gn,p

• n vertices

• P
(
{u,v} ∈ E

)
= p independently

RSP on Gn,p is a two-stage random process

1 draw random graph – connected w.h.p.

2 draw edge weights for existing edges

3 shortest paths

can we reuse results for complete graphs?
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RSP with Gn,p – coupling

Gn,p with Exp(1)

≈ Gn,p with U(0,1)

= complete graph with U(0,1/p), remove edges of weight ≥ 1

≡ complete graph with U(0,1) (scaling, weight ≥ p is never used)

≈ complete graph with Exp(1)

all “sum of lengths” results scale by 1/p

Theorem

“approximation results for complete graphs also hold for Gn,p”
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2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now
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2-opt – RSP in sparse graphs

• sparse graph: m =Θ(n) edges

• Sk : sum of k lightest edge weights

• Sn ≤ TSP

Lemma

E(Sk) = Ω(k2/n)

• TSP =Ω(n)



2-opt – RSP in sparse graphs

• sparse graph: m =Θ(n) edges

• Sk : sum of k lightest edge weights

• Sn ≤ TSP

Lemma

E(Sk) = Ω(k2/n)

• TSP =Ω(n)



2-opt – RSP in sparse graphs

• sparse graph: m =Θ(n) edges

• Sk : sum of k lightest edge weights

• Sn ≤ TSP

Lemma

E(Sk) = Ω(k2/n)

▶ TSP =Ω(n)



2-opt – RSP in sparse graphs

Lemma

E(Sk) = Ω(k2/n)

Proof.

• w1,w2, . . .: edge weigths in increasing order
• w1 ∼ Exp(m)

• wi+1 −wi ∼ Exp(m− i)⇝ wi ∼ ∑
i−1
j=0Exp(m− j)

• Sk = ∑
k
i=1 wi ∼ ∑

k−1
j=0 (k − j)Exp(m− j) = ∑

k−1
j=0 Exp

(m−j
k−j

)

Sk = ∑
k
i=1 wi ∼

≥ ∑
k−1
j=0 Exp

(m
k

)
• E(Sk)≥ k2

m



Approximation ratio of 2-opt in sparse graphs

• P(u,v) = edges of original graph on shortest u–v path

• edges are considered directed for P(u,v)

Lemma

e, f ∈ T with e ̸= f and Pe ∩Pf ̸= /0, then T is not 2-optimal

• upper bound for 2-optimal tour: twice the sum of edge weights

• constant fraction of all edge weights appears in optimal tour

• 2-optimal tours have length O(n)
global optimum has length Ω(n)

Theorem

2-opt on sparse graphs achieves approximation ratio O(1)
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Summary & open problems

summary

• RSP models random metrics

• TSP: nearest neighbor, insertion, 2-opt

• trivial algorithm for facility location & k -center
(consider as concentration of measure)

• some first results on incomplete graphs

open problems

• more for sparse graphs

• directed graphs

• other models for random metrics?
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