
Random Metrics in the Analysis of Algorithms

Bodo Manthey

February 7, 2023

Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?

Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?

Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?

Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?

Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?

Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?

Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?

Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?

Heuristics

nearest neighbor for TSP:
• simple construction heuristic
• worst-case approximation ratio (metric): O(logn)
• experimental: ≈ 1.25
• average-case performance?

Why random metric spaces?

random in [0,1]2

8

14

15
11

8

2

3

7

4

2

independent edge lengths

Random shortest paths = First-passage percolation

1 edge weights:
exponentially distributed,
independent

2 shortest paths w.r.t. weights

2

3

7

4
2

8

14

15

11

8

5

7

9

9

6

e

a

b

c d

Random shortest paths = First-passage percolation

1 edge weights:
exponentially distributed,
independent

2 shortest paths w.r.t. weights

2

3

7

4
2

�A8

��ZZ14

��ZZ15

��ZZ11

�A85

7

9

9

6

e

a

b

c d

Outline

1 Properties of RSP

2 Heuristics for TSP
Nearest neighbor
Insertion heuristics

3 Facility location problem

4 General probability distributions

5 RSP with non-complete graphs
Random graphs
2-opt on sparse graphs

6 Conclusions

Outline

1 Properties of RSP

2 Heuristics for TSP
Nearest neighbor
Insertion heuristics

3 Facility location problem

4 General probability distributions

5 RSP with non-complete graphs
Random graphs
2-opt on sparse graphs

6 Conclusions

Exponential distribution – Properties

Exp(λ)

• density: λe−λx for x ≥ 0
• CDF: 1−e−λx for x ≥ 0
• expected value: 1/λ

t

λ

0

memorylessness (R ∼ Exp(λ))

P(R ≥ t +x | R ≥ t) =
e−λ(x+t)

e−λ t
= P(R ≥ x)

minimum (R1, . . . ,Rk ∼ Exp(λ); M =min{R1, . . . ,Rk})

P(M ≥ x) =
k

∏
i=1

P(Ri ≥ x) = (e−λx)k = e−(λk)x

⇒ M ∼ Exp(λk)

Exponential distribution – Properties

Exp(λ)

• density: λe−λx for x ≥ 0
• CDF: 1−e−λx for x ≥ 0
• expected value: 1/λ

t

λ

0

memorylessness (R ∼ Exp(λ))

P(R ≥ t +x | R ≥ t) =
e−λ(x+t)

e−λ t
= P(R ≥ x)

minimum (R1, . . . ,Rk ∼ Exp(λ); M =min{R1, . . . ,Rk})

P(M ≥ x) =
k

∏
i=1

P(Ri ≥ x) = (e−λx)k = e−(λk)x

⇒ M ∼ Exp(λk)

Exponential distribution – Properties

Exp(λ)

• density: λe−λx for x ≥ 0
• CDF: 1−e−λx for x ≥ 0
• expected value: 1/λ

t

λ

0

memorylessness (R ∼ Exp(λ))

P(R ≥ t +x | R ≥ t) =
e−λ(x+t)

e−λ t
= P(R ≥ x)

minimum (R1, . . . ,Rk ∼ Exp(λ); M =min{R1, . . . ,Rk})

P(M ≥ x) =
k

∏
i=1

P(Ri ≥ x) = (e−λx)k = e−(λk)x

⇒ M ∼ Exp(λk)

Question

What is the typical distance in RSP?

What is E
(
d(u,v)

)
?

1 logn

2 1

3 1/
√

n

4 logn/n

5 1/n

Question

What is the typical distance in RSP?

What is E
(
d(u,v)

)
?

1 logn

2 1

3 1/
√

n

4 logn/n

5 1/n

Distribution of RSP

L2

L3

≥ L3−
L2

≥ L3

(Hn = ∑
n
i=1

1
i)

• Lk = distance to k -th closest vertex

• L1 = 0

• L2 = Exp(n−1)

• Lk+1 = Lk +Exp
(
(n−k) ·k

)
• Lk = ∑

k−1
i=1 Exp

(
(n− i) · i

)
• E(Lk) = ∑

k−1
i=1

1
(n−i)·i = ∑

k−1
i=1

1
n · (

1
i +

1
n−i)

E(Lk)

= 1
n ·

(
Hk−1 +Hn−1 −Hn−k

)
Theorem (Janson 1999)

E
(
d(u,v)

)
= 1 · Hn−1

n−1 ≈ 1 · lnn
n

E
(
maxv d(u,v)

)
= E

(
Ln) = 2 · Hn−1

n ≈ 2 · lnn
n

E
(
maxu,v d(u,v)

)
≈ 3 · lnn

n

Distribution of RSP

L2

L3

≥ L3−
L2

≥ L3

(Hn = ∑
n
i=1

1
i)

• Lk = distance to k -th closest vertex

• L1 = 0

• L2 = Exp(n−1)

• Lk+1 = Lk +Exp
(
(n−k) ·k

)
• Lk = ∑

k−1
i=1 Exp

(
(n− i) · i

)

• E(Lk) = ∑
k−1
i=1

1
(n−i)·i = ∑

k−1
i=1

1
n · (

1
i +

1
n−i)

E(Lk)

= 1
n ·

(
Hk−1 +Hn−1 −Hn−k

)
Theorem (Janson 1999)

E
(
d(u,v)

)
= 1 · Hn−1

n−1 ≈ 1 · lnn
n

E
(
maxv d(u,v)

)
= E

(
Ln) = 2 · Hn−1

n ≈ 2 · lnn
n

E
(
maxu,v d(u,v)

)
≈ 3 · lnn

n

Distribution of RSP

L2

L3

≥ L3−
L2

≥ L3

(Hn = ∑
n
i=1

1
i)

• Lk = distance to k -th closest vertex

• L1 = 0

• L2 = Exp(n−1)

• Lk+1 = Lk +Exp
(
(n−k) ·k

)
• Lk = ∑

k−1
i=1 Exp

(
(n− i) · i

)
• E(Lk) = ∑

k−1
i=1

1
(n−i)·i = ∑

k−1
i=1

1
n · (

1
i +

1
n−i)

E(Lk)

= 1
n ·

(
Hk−1 +Hn−1 −Hn−k

)
Theorem (Janson 1999)

E
(
d(u,v)

)
= 1 · Hn−1

n−1 ≈ 1 · lnn
n

E
(
maxv d(u,v)

)
= E

(
Ln) = 2 · Hn−1

n ≈ 2 · lnn
n

E
(
maxu,v d(u,v)

)
≈ 3 · lnn

n

Distribution of RSP

L2

L3

≥ L3−
L2

≥ L3

(Hn = ∑
n
i=1

1
i)

• Lk = distance to k -th closest vertex

• L1 = 0

• L2 = Exp(n−1)

• Lk+1 = Lk +Exp
(
(n−k) ·k

)
• Lk = ∑

k−1
i=1 Exp

(
(n− i) · i

)
• E(Lk) = ∑

k−1
i=1

1
(n−i)·i = ∑

k−1
i=1

1
n · (

1
i +

1
n−i)

E(Lk)

= 1
n ·

(
Hk−1 +Hn−1 −Hn−k

)

Theorem (Janson 1999)

E
(
d(u,v)

)
= 1 · Hn−1

n−1 ≈ 1 · lnn
n

E
(
maxv d(u,v)

)
= E

(
Ln) = 2 · Hn−1

n ≈ 2 · lnn
n

E
(
maxu,v d(u,v)

)
≈ 3 · lnn

n

Distribution of RSP

L2

L3

≥ L3−
L2

≥ L3

(Hn = ∑
n
i=1

1
i)

• Lk = distance to k -th closest vertex

• L1 = 0

• L2 = Exp(n−1)

• Lk+1 = Lk +Exp
(
(n−k) ·k

)
• Lk = ∑

k−1
i=1 Exp

(
(n− i) · i

)
• E(Lk) = ∑

k−1
i=1

1
(n−i)·i = ∑

k−1
i=1

1
n · (

1
i +

1
n−i)

E(Lk)

= 1
n ·

(
Hk−1 +Hn−1 −Hn−k

)

Theorem (Janson 1999)

E
(
d(u,v)

)
= 1 · Hn−1

n−1 ≈ 1 · lnn
n

E
(
maxv d(u,v)

)
= E

(
Ln) = 2 · Hn−1

n ≈ 2 · lnn
n

E
(
maxu,v d(u,v)

)
≈ 3 · lnn

n

Distribution of RSP

L2

L3

≥ L3−
L2

≥ L3

(Hn = ∑
n
i=1

1
i)

• Lk = distance to k -th closest vertex

• L1 = 0

• L2 = Exp(n−1)

• Lk+1 = Lk +Exp
(
(n−k) ·k

)
• Lk = ∑

k−1
i=1 Exp

(
(n− i) · i

)
• E(Lk) = ∑

k−1
i=1

1
(n−i)·i = ∑

k−1
i=1

1
n · (

1
i +

1
n−i)

E(Lk)

= 1
n ·

(
Hk−1 +Hn−1 −Hn−k

)
Theorem (Janson 1999)

E
(
d(u,v)

)
= 1 · Hn−1

n−1 ≈ 1 · lnn
n

E
(
maxv d(u,v)

)
= E

(
Ln) = 2 · Hn−1

n ≈ 2 · lnn
n

E
(
maxu,v d(u,v)

)
≈ 3 · lnn

n

Distribution of RSP

L2

L3

≥ L3−
L2

≥ L3

(Hn = ∑
n
i=1

1
i)

• Lk = distance to k -th closest vertex

• L1 = 0

• L2 = Exp(n−1)

• Lk+1 = Lk +Exp
(
(n−k) ·k

)
• Lk = ∑

k−1
i=1 Exp

(
(n− i) · i

)
• E(Lk) = ∑

k−1
i=1

1
(n−i)·i = ∑

k−1
i=1

1
n · (

1
i +

1
n−i)

E(Lk)

= 1
n ·

(
Hk−1 +Hn−1 −Hn−k

)
Theorem (Janson 1999)

E
(
d(u,v)

)
= 1 · Hn−1

n−1 ≈ 1 · lnn
n

E
(
maxv d(u,v)

)
= E

(
Ln) = 2 · Hn−1

n ≈ 2 · lnn
n

E
(
maxu,v d(u,v)

)
≈ 3 · lnn

n

Distribution of RSP

L2

L3

≥ L3−
L2

≥ L3

(Hn = ∑
n
i=1

1
i)

• Lk = distance to k -th closest vertex

• L1 = 0

• L2 = Exp(n−1)

• Lk+1 = Lk +Exp
(
(n−k) ·k

)
• Lk = ∑

k−1
i=1 Exp

(
(n− i) · i

)
• E(Lk) = ∑

k−1
i=1

1
(n−i)·i = ∑

k−1
i=1

1
n · (

1
i +

1
n−i)

E(Lk)

= 1
n ·

(
Hk−1 +Hn−1 −Hn−k

)
Theorem (Janson 1999)

E
(
d(u,v)

)
= 1 · Hn−1

n−1 ≈ 1 · lnn
n

E
(
maxv d(u,v)

)
= E

(
Ln) = 2 · Hn−1

n ≈ 2 · lnn
n

E
(
maxu,v d(u,v)

)
≈ 3 · lnn

n

Expected edge length

Theorem (Janson 1999)

E
(
d(u,v)

)
= Hn−1

n−1

≈ lnn
n

Proof.

previous slide: E(Lk) =
1
n ·

(
Hn−1 +Hk−1 −Hn−k

)

E
(
d(u,v)

)
=

1
n−1

·
n

∑
k=2

E(Lk)

=
1
n
·Hn−1 +

1
n · (n−1)

·
n

∑
k=2

Hk−1 −Hn−k

=
1
n
·Hn−1 +

1
n · (n−1)

·Hn−1 =
1

n−1
·Hn−1

Expected edge length

Theorem (Janson 1999)

E
(
d(u,v)

)
= Hn−1

n−1

≈ lnn
n

Proof.

previous slide: E(Lk) =
1
n ·

(
Hn−1 +Hk−1 −Hn−k

)

E
(
d(u,v)

)
=

1
n−1

·
n

∑
k=2

E(Lk)

=
1
n
·Hn−1 +

1
n · (n−1)

·
n

∑
k=2

Hk−1 −Hn−k

=
1
n
·Hn−1 +

1
n · (n−1)

·Hn−1 =
1

n−1
·Hn−1

Expected edge length

Theorem (Janson 1999)

E
(
d(u,v)

)
= Hn−1

n−1

≈ lnn
n

Proof.

previous slide: E(Lk) =
1
n ·

(
Hn−1 +Hk−1 −Hn−k

)

E
(
d(u,v)

)
=

1
n−1

·
n

∑
k=2

E(Lk)

=
1
n
·Hn−1 +

1
n · (n−1)

·
n

∑
k=2

Hk−1 −Hn−k

=
1
n
·Hn−1 +

1
n · (n−1)

·Hn−1 =
1

n−1
·Hn−1

Expected edge length

Theorem (Janson 1999)

E
(
d(u,v)

)
= Hn−1

n−1

≈ lnn
n

Proof.

previous slide: E(Lk) =
1
n ·

(
Hn−1 +Hk−1 −Hn−k

)

E
(
d(u,v)

)
=

1
n−1

·
n

∑
k=2

E(Lk)

=
1
n
·Hn−1 +

1
n · (n−1)

·
n

∑
k=2

Hk−1 −Hn−k

=
1
n
·Hn−1 +

1
n · (n−1)

·Hn−1 =
1

n−1
·Hn−1

Expected edge length

Theorem (Janson 1999)

E
(
d(u,v)

)
= Hn−1

n−1

≈ lnn
n

Proof.

previous slide: E(Lk) =
1
n ·

(
Hn−1 +Hk−1 −Hn−k

)

E
(
d(u,v)

)
=

1
n−1

·
n

∑
k=2

E(Lk)

=
1
n
·Hn−1 +

1
n · (n−1)

·
n

∑
k=2

Hk−1 −Hn−k

=
1
n
·Hn−1 +

1
n · (n−1)

·Hn−1 =
1

n−1
·Hn−1

Expected edge length

Theorem (Janson 1999)

E
(
d(u,v)

)
= Hn−1

n−1 ≈ lnn
n

Proof.

previous slide: E(Lk) =
1
n ·

(
Hn−1 +Hk−1 −Hn−k

)

E
(
d(u,v)

)
=

1
n−1

·
n

∑
k=2

E(Lk)

=
1
n
·Hn−1 +

1
n · (n−1)

·
n

∑
k=2

Hk−1 −Hn−k

=
1
n
·Hn−1 +

1
n · (n−1)

·Hn−1 =
1

n−1
·Hn−1

Sums of exponential random variables

Lemma

X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

Proof.

• Yi ∼ Exp(λ) independently, order statistics Y(1) ≤ Y(2) ≤ . . .≤ Y(m)

• Y(i)−Y(i−1) ∼ Exp(λ i) (memorylessness)
• X has same distribution as max{Y1, . . . ,Ym}= Y(m)

Lemma
k−1

∑
i=1

Exp(ni)≤
k−1

∑
i=1

Exp((n− i)i)︸ ︷︷ ︸
Lk∼

≤
k−1

∑
i=1

Exp((n−k)i)

Sums of exponential random variables

Lemma

X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

Proof.

• Yi ∼ Exp(λ) independently, order statistics Y(1) ≤ Y(2) ≤ . . .≤ Y(m)

• Y(i)−Y(i−1) ∼ Exp(λ i) (memorylessness)
• X has same distribution as max{Y1, . . . ,Ym}= Y(m)

Lemma
k−1

∑
i=1

Exp(ni)≤
k−1

∑
i=1

Exp((n− i)i)︸ ︷︷ ︸
Lk∼

≤
k−1

∑
i=1

Exp((n−k)i)

Concentration of Lk

Lemma(
1−e−(n−k)t

)k ≤ P(Lk ≤ t)≤
(
1−e−nt

)k

Proof.

• X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

• ∑
k−1
i=1 Exp(ni)≤ Lk ≤ ∑

k−1
i=1 Exp((n−k)i)

Corollary

P(Lk > t)≤1−
(
1−e−(n−k)t

)k≤ 1−
(
1−ke−(n−k)t

)
= ke−(n−k)t

Proof.

(1−x)y ≥ 1−xy

Concentration of Lk

Lemma(
1−e−(n−k)t

)k ≤ P(Lk ≤ t)≤
(
1−e−nt

)k

Proof.

• X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

• ∑
k−1
i=1 Exp(ni)≤ Lk ≤ ∑

k−1
i=1 Exp((n−k)i)

Corollary

P(Lk > t)≤1−
(
1−e−(n−k)t

)k≤ 1−
(
1−ke−(n−k)t

)
= ke−(n−k)t

Proof.

(1−x)y ≥ 1−xy

Concentration of Lk

Lemma(
1−e−(n−k)t

)k ≤ P(Lk ≤ t)≤
(
1−e−nt

)k

Proof.

• X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

• ∑
k−1
i=1 Exp(ni)≤ Lk ≤ ∑

k−1
i=1 Exp((n−k)i)

Corollary

P(Lk > t)≤1−
(
1−e−(n−k)t

)k≤ 1−
(
1−ke−(n−k)t

)
= ke−(n−k)t

Proof.

(1−x)y ≥ 1−xy

Concentration of Lk

Lemma(
1−e−(n−k)t

)k ≤ P(Lk ≤ t)≤
(
1−e−nt

)k

Proof.

• X ∼ ∑
m
i=1Exp(λ i), then P(X ≤ t) = (1−e−λ t)m.

• ∑
k−1
i=1 Exp(ni)≤ Lk ≤ ∑

k−1
i=1 Exp((n−k)i)

Corollary

P(Lk > t)≤1−
(
1−e−(n−k)t

)k≤ 1−
(
1−ke−(n−k)t

)
= ke−(n−k)t

Proof.

(1−x)y ≥ 1−xy

Balls around nodes

Corollary

P(Lk > t)≤ ke−(n−k)t

ball around v :

Bt(v) = {u ∈ V | d(v ,u)≤ t}

Corollary

P
(
|Bt(v)|< k

)
= P

(
Lk > t

)
≤ ke−(n−k)t

Global structure

Lemma

“P
(
v has < ent neighbors within distance t

)
≤ e−nt ”

example: P
(

v has < logn neighbors within
log logn

n

)
≤ 1

logn

Global structure

Lemma

“P
(
v has < ent neighbors within distance t

)
≤ e−nt ”

n
ent components of size ent and diameter O(t)

n
ent orphans

is this really possible without leftover vertices?

Global structure

Lemma

“P
(
v has < ent neighbors within distance t

)
≤ e−nt ”

n
ent components of size ent and diameter O(t)

n
ent orphans

is this really possible without leftover vertices?

Global structure

Lemma

“P
(
v has < ent neighbors within distance t

)
≤ e−nt ”

• greedily pick vertex v with Bt(v)≥ ent without marked neighbor

• mark all vertices in Bt(v) and keep going

• assign remaining vertices to some cluster or keep them as orphans

Outline

1 Properties of RSP

2 Heuristics for TSP
Nearest neighbor
Insertion heuristics

3 Facility location problem

4 General probability distributions

5 RSP with non-complete graphs
Random graphs
2-opt on sparse graphs

6 Conclusions

Optimal TSP tour

Theorem

E(length of optimal TSP tour) = Ω(1) (in fact, Θ(1))

• length of shortest edge at v does not change under shortest path

• length of shortest edge at v ∼ Exp(n−1)

• E(length of shortest edge at v) = 1
n−1

• linearity of expectation

• holds even without RSP

Optimal TSP tour

Theorem

E(length of optimal TSP tour) = Ω(1) (in fact, Θ(1))

• length of shortest edge at v does not change under shortest path

• length of shortest edge at v ∼ Exp(n−1)

• E(length of shortest edge at v) = 1
n−1

• linearity of expectation

• holds even without RSP

Optimal TSP tour

Theorem

E(length of optimal TSP tour) = Ω(1) (in fact, Θ(1))

• length of shortest edge at v does not change under shortest path

• length of shortest edge at v ∼ Exp(n−1)

• E(length of shortest edge at v) = 1
n−1

• linearity of expectation

• holds even without RSP

Nearest neighbor for TSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

Nearest neighbor for TSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

Nearest neighbor for TSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

Nearest neighbor for TSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

Nearest neighbor for TSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

Nearest neighbor for TSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

Nearest neighbor for TSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

Average-case nearest neighbor without RSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

Average-case nearest neighbor without RSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

1 1

2 logn

3
√

n

4 n

Average-case nearest neighbor without RSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

• first edge ∼ Exp(n−1)

• k -th edge ∼ Exp(n−k)
• second to last edge ∼ Exp(1)
• E(last edge) = n

n−1

• E(NN without RSP) = Hn−1 +
n

n−1 =Θ(logn)

Average-case nearest neighbor without RSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

• first edge ∼ Exp(n−1)
• k -th edge ∼ Exp(n−k)
• second to last edge ∼ Exp(1)

• E(last edge) = n
n−1

• E(NN without RSP) = Hn−1 +
n

n−1 =Θ(logn)

Average-case nearest neighbor without RSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

• first edge ∼ Exp(n−1)
• k -th edge ∼ Exp(n−k)
• second to last edge ∼ Exp(1)
• E(last edge) = n

n−1

• E(NN without RSP) = Hn−1 +
n

n−1 =Θ(logn)

Average-case nearest neighbor without RSP

What is the expected tour length?
distances independent, Exp(1), no RSP, no triangle inequality

• first edge ∼ Exp(n−1)
• k -th edge ∼ Exp(n−k)
• second to last edge ∼ Exp(1)
• E(last edge) = n

n−1

▶ E(NN without RSP) = Hn−1 +
n

n−1 =Θ(logn)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan

• ti = i
n for i = 1,2,3, . . .

long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Nearest neighbor for TSP

• ≤ 1 long outgoing edge per component/orphan
• ti = i

n for i = 1,2,3, . . .
long edges for phase i are estimated as ≤ ti+1

• ≤ n
enti

= e−in edges of length between ti and ti+1

• tour length ≤ ∑
∞
i=0 e−inti+1 = O(1)

Theorem

nearest neighbor: expected length O(1), expected approximation ratio O(1)

Insertion heuristics

• every component: cheap insertion from second point on

• costs > t only once per component

Theorem

every insertion heuristic achieves expected ratio O(1)

Insertion heuristics

• every component: cheap insertion from second point on

• costs > t only once per component

Theorem

every insertion heuristic achieves expected ratio O(1)

Insertion heuristics

• every component: cheap insertion from second point on

• costs > t only once per component

Theorem

every insertion heuristic achieves expected ratio O(1)

Insertion heuristics

• every component: cheap insertion from second point on

• costs > t only once per component

Theorem

every insertion heuristic achieves expected ratio O(1)

Insertion heuristics

• every component: cheap insertion from second point on

• costs > t only once per component

Theorem

every insertion heuristic achieves expected ratio O(1)

Insertion heuristics

• every component: cheap insertion from second point on

• costs > t only once per component

Theorem

every insertion heuristic achieves expected ratio O(1)

Insertion heuristics

• every component: cheap insertion from second point on

• costs > t only once per component

Theorem

every insertion heuristic achieves expected ratio O(1)

Outline

1 Properties of RSP

2 Heuristics for TSP
Nearest neighbor
Insertion heuristics

3 Facility location problem

4 General probability distributions

5 RSP with non-complete graphs
Random graphs
2-opt on sparse graphs

6 Conclusions

k -center

• find C ⊆ V with |C|= k

• minimize ∑
v∈V

min
c∈C

(
d(v ,c)

)

L3

≥ L3

• fixed C
• Lk+1, . . . ,Ln: distances to C
• L1, . . . ,Lk = 0
• tj = Lj+1 −Lj = Exp

(
j · (n− j)

)
costs =

n

∑
i=k+1

Li =
n−1

∑
j=k

(n− j) · tj =
n−1

∑
j=k

Exp
(
j
)

Theorem

any solution is a
(
1+o(1)

)
-approximation for k = O(n1−ε)

k -center

• find C ⊆ V with |C|= k

• minimize ∑
v∈V

min
c∈C

(
d(v ,c)

)

L3

≥ L3

• fixed C
• Lk+1, . . . ,Ln: distances to C
• L1, . . . ,Lk = 0
• tj = Lj+1 −Lj = Exp

(
j · (n− j)

)
costs =

n

∑
i=k+1

Li =
n−1

∑
j=k

(n− j) · tj =
n−1

∑
j=k

Exp
(
j
)

Theorem

any solution is a
(
1+o(1)

)
-approximation for k = O(n1−ε)

k -center

• find C ⊆ V with |C|= k

• minimize ∑
v∈V

min
c∈C

(
d(v ,c)

)

L3

≥ L3

• fixed C
• Lk+1, . . . ,Ln: distances to C
• L1, . . . ,Lk = 0
• tj = Lj+1 −Lj = Exp

(
j · (n− j)

)
costs =

n

∑
i=k+1

Li =
n−1

∑
j=k

(n− j) · tj =
n−1

∑
j=k

Exp
(
j
)

Theorem

any solution is a
(
1+o(1)

)
-approximation for k = O(n1−ε)

Facility location problem

• find C ⊆ V

• minimize ∑
v∈C

fv + ∑
v∈V

min
c∈C

(
d(v ,c)

)

• f1 ≤ f2 ≤ . . .≤ fn (adversarial)

• opening k cheapest facilities: E(costs) =
k

∑
i=1

fi +
n−1

∑
i=k

1
i

• ALG: choose k =max{i | fi < 1
i−1} facilities

• more challenging: lower bounds for optimal solution

• Cauchy–Schwarz for “decoupling”:

E
(

ALG
OPT

)
≤

√
E(ALG2) ·E

(
1

OPT2

)

Theorem

ALG is a
(
1+o(1)

)
-approximation for k = o(n)

Facility location problem

• find C ⊆ V

• minimize ∑
v∈C

fv + ∑
v∈V

min
c∈C

(
d(v ,c)

)
• f1 ≤ f2 ≤ . . .≤ fn (adversarial)

• opening k cheapest facilities: E(costs) =
k

∑
i=1

fi +
n−1

∑
i=k

1
i

• ALG: choose k =max{i | fi < 1
i−1} facilities

• more challenging: lower bounds for optimal solution

• Cauchy–Schwarz for “decoupling”:

E
(

ALG
OPT

)
≤

√
E(ALG2) ·E

(
1

OPT2

)

Theorem

ALG is a
(
1+o(1)

)
-approximation for k = o(n)

Facility location problem

• find C ⊆ V

• minimize ∑
v∈C

fv + ∑
v∈V

min
c∈C

(
d(v ,c)

)
• f1 ≤ f2 ≤ . . .≤ fn (adversarial)

• opening k cheapest facilities: E(costs) =
k

∑
i=1

fi +
n−1

∑
i=k

1
i

• ALG: choose k =max{i | fi < 1
i−1} facilities

• more challenging: lower bounds for optimal solution

• Cauchy–Schwarz for “decoupling”:

E
(

ALG
OPT

)
≤

√
E(ALG2) ·E

(
1

OPT2

)

Theorem

ALG is a
(
1+o(1)

)
-approximation for k = o(n)

Facility location problem

• find C ⊆ V

• minimize ∑
v∈C

fv + ∑
v∈V

min
c∈C

(
d(v ,c)

)
• f1 ≤ f2 ≤ . . .≤ fn (adversarial)

• opening k cheapest facilities: E(costs) =
k

∑
i=1

fi +
n−1

∑
i=k

1
i

• ALG: choose k =max{i | fi < 1
i−1} facilities

• more challenging: lower bounds for optimal solution

• Cauchy–Schwarz for “decoupling”:

E
(

ALG
OPT

)
≤

√
E(ALG2) ·E

(
1

OPT2

)

Theorem

ALG is a
(
1+o(1)

)
-approximation for k = o(n)

Facility location problem

• find C ⊆ V

• minimize ∑
v∈C

fv + ∑
v∈V

min
c∈C

(
d(v ,c)

)
• f1 ≤ f2 ≤ . . .≤ fn (adversarial)

• opening k cheapest facilities: E(costs) =
k

∑
i=1

fi +
n−1

∑
i=k

1
i

• ALG: choose k =max{i | fi < 1
i−1} facilities

• more challenging: lower bounds for optimal solution

• Cauchy–Schwarz for “decoupling”:

E
(

ALG
OPT

)
≤

√
E(ALG2) ·E

(
1

OPT2

)

Theorem

ALG is a
(
1+o(1)

)
-approximation for k = o(n)

Outline

1 Properties of RSP

2 Heuristics for TSP
Nearest neighbor
Insertion heuristics

3 Facility location problem

4 General probability distributions

5 RSP with non-complete graphs
Random graphs
2-opt on sparse graphs

6 Conclusions

General probability distributions
exponential

1

0
0 1

uniform

1

0
0 1

can we transfer the results to uniform/arbitrary distributions?

• observation: distances decrease with n

• density f : differentiable in (0,ε)

• P(weight ≤ x) = x +o(x)

(every distribution is approximately uniform in (0,ε))

• results carry over, scale by 1±o(1)

General probability distributions
exponential

1

0
0 1

uniform

1

0
0 1

can we transfer the results to uniform/arbitrary distributions?

• observation: distances decrease with n

• density f : differentiable in (0,ε)

• P(weight ≤ x) = x +o(x)

(every distribution is approximately uniform in (0,ε))

• results carry over, scale by 1±o(1)

General probability distributions
exponential

1

0
0 1

uniform

1

0
0 1

can we transfer the results to uniform/arbitrary distributions?

• observation: distances decrease with n

• density f : differentiable in (0,ε)

• P(weight ≤ x) = x +o(x)

(every distribution is approximately uniform in (0,ε))

▶ results carry over, scale by 1±o(1)

Outline

1 Properties of RSP

2 Heuristics for TSP
Nearest neighbor
Insertion heuristics

3 Facility location problem

4 General probability distributions

5 RSP with non-complete graphs
Random graphs
2-opt on sparse graphs

6 Conclusions

RSP generated from non-complete graphs

• balls grow extremely fast:
∣∣Bt(v)

∣∣= ∣∣{u ∈ V | d(v ,u)≤ t
}∣∣≈ ent

• unbounded doubling dimension

• RSP metrics can be generated from any connected graph

(the metric is always complete!)

• use non-complete/sparse graphs!

• challenges:

• unknown structure
• lack of symmetry

RSP generated from non-complete graphs

• balls grow extremely fast:
∣∣Bt(v)

∣∣= ∣∣{u ∈ V | d(v ,u)≤ t
}∣∣≈ ent

• unbounded doubling dimension

• RSP metrics can be generated from any connected graph

(the metric is always complete!)

▶ use non-complete/sparse graphs!

• challenges:

• unknown structure
• lack of symmetry

RSP generated from non-complete graphs

• balls grow extremely fast:
∣∣Bt(v)

∣∣= ∣∣{u ∈ V | d(v ,u)≤ t
}∣∣≈ ent

• unbounded doubling dimension

• RSP metrics can be generated from any connected graph

(the metric is always complete!)

▶ use non-complete/sparse graphs!

• challenges:

• unknown structure
• lack of symmetry

RSP with Gn,p random graphs

Gn,p

• n vertices

• P
(
{u,v} ∈ E

)
= p independently

RSP on Gn,p is a two-stage random process

1 draw random graph – connected w.h.p.

2 draw edge weights for existing edges

3 shortest paths

can we reuse results for complete graphs?

RSP with Gn,p random graphs

Gn,p

• n vertices

• P
(
{u,v} ∈ E

)
= p independently

RSP on Gn,p is a two-stage random process

1 draw random graph – connected w.h.p.

2 draw edge weights for existing edges

3 shortest paths

can we reuse results for complete graphs?

RSP with Gn,p random graphs

Gn,p

• n vertices

• P
(
{u,v} ∈ E

)
= p independently

RSP on Gn,p is a two-stage random process

1 draw random graph – connected w.h.p.

2 draw edge weights for existing edges

3 shortest paths

can we reuse results for complete graphs?

RSP with Gn,p – coupling

Gn,p with Exp(1)

≈ Gn,p with U(0,1)

= complete graph with U(0,1/p), remove edges of weight ≥ 1

≡ complete graph with U(0,1) (scaling, weight ≥ p is never used)

≈ complete graph with Exp(1)

all “sum of lengths” results scale by 1/p

Theorem

“approximation results for complete graphs also hold for Gn,p”

RSP with Gn,p – coupling

Gn,p with Exp(1)

≈ Gn,p with U(0,1)

= complete graph with U(0,1/p), remove edges of weight ≥ 1

≡ complete graph with U(0,1) (scaling, weight ≥ p is never used)

≈ complete graph with Exp(1)

all “sum of lengths” results scale by 1/p

Theorem

“approximation results for complete graphs also hold for Gn,p”

2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP – approximation ratio

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt heuristic for TSP – approximation ratio

worst-case: O(
√

n)

RSP on complete graphs: O(logn)⇝ trivial – why?

maximum edge ≈ 3 · lnn
n & optimal tour =Ω(1)

RSP on sparse graph: O(1)⇝ now

2-opt – RSP in sparse graphs

• sparse graph: m =Θ(n) edges

• Sk : sum of k lightest edge weights

• Sn ≤ TSP

Lemma

E(Sk) = Ω(k2/n)

• TSP =Ω(n)

2-opt – RSP in sparse graphs

• sparse graph: m =Θ(n) edges

• Sk : sum of k lightest edge weights

• Sn ≤ TSP

Lemma

E(Sk) = Ω(k2/n)

• TSP =Ω(n)

2-opt – RSP in sparse graphs

• sparse graph: m =Θ(n) edges

• Sk : sum of k lightest edge weights

• Sn ≤ TSP

Lemma

E(Sk) = Ω(k2/n)

▶ TSP =Ω(n)

2-opt – RSP in sparse graphs

Lemma

E(Sk) = Ω(k2/n)

Proof.

• w1,w2, . . .: edge weigths in increasing order
• w1 ∼ Exp(m)

• wi+1 −wi ∼ Exp(m− i)⇝ wi ∼ ∑
i−1
j=0Exp(m− j)

• Sk = ∑
k
i=1 wi ∼ ∑

k−1
j=0 (k − j)Exp(m− j) = ∑

k−1
j=0 Exp

(m−j
k−j

)

Sk = ∑
k
i=1 wi ∼

≥ ∑
k−1
j=0 Exp

(m
k

)
• E(Sk)≥ k2

m

Approximation ratio of 2-opt in sparse graphs

• P(u,v) = edges of original graph on shortest u–v path

• edges are considered directed for P(u,v)

Lemma

e, f ∈ T with e ̸= f and Pe ∩Pf ̸= /0, then T is not 2-optimal

• upper bound for 2-optimal tour: twice the sum of edge weights

• constant fraction of all edge weights appears in optimal tour

• 2-optimal tours have length O(n)
global optimum has length Ω(n)

Theorem

2-opt on sparse graphs achieves approximation ratio O(1)

Approximation ratio of 2-opt in sparse graphs

• P(u,v) = edges of original graph on shortest u–v path

• edges are considered directed for P(u,v)

Lemma

e, f ∈ T with e ̸= f and Pe ∩Pf ̸= /0, then T is not 2-optimal

• upper bound for 2-optimal tour: twice the sum of edge weights

• constant fraction of all edge weights appears in optimal tour

• 2-optimal tours have length O(n)
global optimum has length Ω(n)

Theorem

2-opt on sparse graphs achieves approximation ratio O(1)

Approximation ratio of 2-opt in sparse graphs

• P(u,v) = edges of original graph on shortest u–v path

• edges are considered directed for P(u,v)

Lemma

e, f ∈ T with e ̸= f and Pe ∩Pf ̸= /0, then T is not 2-optimal

• upper bound for 2-optimal tour: twice the sum of edge weights

• constant fraction of all edge weights appears in optimal tour

• 2-optimal tours have length O(n)
global optimum has length Ω(n)

Theorem

2-opt on sparse graphs achieves approximation ratio O(1)

Outline

1 Properties of RSP

2 Heuristics for TSP
Nearest neighbor
Insertion heuristics

3 Facility location problem

4 General probability distributions

5 RSP with non-complete graphs
Random graphs
2-opt on sparse graphs

6 Conclusions

Summary & open problems

summary

• RSP models random metrics

• TSP: nearest neighbor, insertion, 2-opt

• trivial algorithm for facility location & k -center
(consider as concentration of measure)

• some first results on incomplete graphs

open problems

• more for sparse graphs

• directed graphs

• other models for random metrics?

Literature

1 Davis, Prieditis: The expected length of a shortest path.
Information Processing Letters, 1993.

2 Janson: One, two, three times logn/n for paths in a complete graph. . .
Combinatorics, Probability & Computing, 1999.

3 Bringmann, Engels, M., Rao: Random shortest paths: . . .
Algorithmica, 2015.

4 Klootwijk, M.: Probabilistic analysis of facility location on random. . .
CiE 2019.

5 Klootwijk, M.: Probabilistic analysis of opt. problems on sparse. . .
AofA 2020.

6 Klootwijk, M., Visser: Probabilistic analysis of optimization problems. . .
Theoretical Computer Science, 2021.

	Properties of RSP
	Heuristics for TSP
	Nearest neighbor
	Insertion heuristics

	Facility location problem
	General probability distributions
	RSP with non-complete graphs
	Random graphs
	2-opt on sparse graphs

	Conclusions

