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No:

Obs. For any G , slope(G ) ≥ and slope(G ) ≥ δ(G ).

For sufficiently large n and ∆ ≥ 5, there is a G with
slope(G ) > n1/2−O(1/∆). [PP EJC’06]

n1−O(1/∆) [DSW CGTA’06]
for interval, co-comparability, and AT-free graphs.Yes:
f (∆) = ∆ + 1Yes:

∆(G )/2



Slope Number [introduced by Wade & Chu, 1994]
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Suderman, Wood CGTA’07]

[arcs: Schulz JGAA’15]



Segment & Arc Number

Def. The segment number of G , seg(G ), is the minimum
number of line segments formed by the edges of G in a
s-l drawing.

Obs. For any G , seg(G ) ≥

[segments: Dujmović, Eppstein,
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• point-set embeddability

• track number
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beyond-planarity?



Track Number [Dujmović, Pór, Wood DMTCS’04]

Def. A t-track layout consists of a map τ : V → {1, . . . , t}
and orders (<i )1≤i≤t on Vi := τ−1(i) such that
– Vi is independent and
– there are no X-crossings:
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Track Number [Dujmović, Pór, Wood DMTCS’04]

Def. A t-track layout consists of a map τ : V → {1, . . . , t}
and orders (<i )1≤i≤t on Vi := τ−1(i) such that
– Vi is independent and
– there are no X-crossings:

i

j

k

X
The track number tn(G ) of G
is the smallest t such that
G has a t-track layout.

Thm. Any t-track G has a s-l drawing in O(t)×O(t)×O(n).
[Dujmović, Morin, Wood SIAM.J.Comp.]
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Making crossings nicer

• RAC / LAC drawings

• (smooth / slanted) orthogonal drawings

• edge casings
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(Slanted / Smooth) Orthogonal Drawings

Def. In a smooth orthogonal drawing,
– edges enter vertices only in the four ports N, E, S, W,
– edges are sequences of circular arcs or line segments,
– consecutive arcs meet in horizontal or vert. tangents.

Def. In a slanted orthogonal drawing,
– edges enter vertices only in the four ports N, E, S, W,
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Study:

Which

crossings

do we

allow?
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Slanted Orthogonal (slog) Drawings

[Bekos, Kaufmann, Krug, Ludwig, Näher, Roselli JGAA’14]

• Can compute bend-opt. slog representations via network flow.

• For given slog representation, can compute close-to bend-optimal slog
drawings on a quadratic-size grid.

• ILP that computes a bend-optimal slog drawing for a given
representation (but unknown whether the ILP is always feasible).

• Bend-optimal drawings may require exponential area.
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Smooth Orthogonal Drawings

• Do all 4-planar graphs admit an SC2-layout in polynomial area?

• Do all 4-outerplanar graphs admit an SC1-layout?

• Do all 3-planar graphs admit an SC1-layout?

• NP-hard to decide whether a 4-planar graph admits an SC1-layout?

Def. orthogonal complexity 2

smooth complexity 1

[Bekos, Kaufmann, Kobourov, Symvonis, JGAA’14]
[Alam, Bekos, Kaufmann, Kindermann, Kobourov, W. LATIN’14]

Thm. Any 4-planar graph admits an SC2-layout.

Thm. Any biconn. 4-outerplane graph admits an SC1-layout.

Thm. Some graphs require exponential area if drawn with SC1.

(OC2-layout)

(SC1-layout)

Thm. Some 4-planar graphs admit OC2-layouts but not SC1.
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Edge casing – Edges & Switches, Tunnels & Bridges

[Eppstein, van Kreveld, Mumford, Speckmann CGTA’09]

stacking vs. weaving

k = O(m2) – number of crossings (I simplified some runtimes.)

Def.

MinTotalSwitches open O(k5/2 log3/2 k)

MaxTotalSwitches open O(k5/2 log3/2 k)
MinMaxSwitches open open
MinMaxTunnels O(m log m + k) exp. O(m4)
MinMaxTunnelLength O(m log m + k) exp. NP-hard
MaxMinTunnelDistance O(m log m + k log m) exp. O(m3 log m) exp.



Eliminating crossings

• confluent drawings

• partial edge drawings



Confluent Drawings [Dickerson, Eppstein,
Goodrich, Meng JGAA’05]

Def. G is confluent if G admits a planar drawing s.t.
– vertices correspond to points,
– edges correspond 1 : 1 to locally-monotone curves

(“train tracks”).
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Partial Edge Drawings: A User Study

Evaluating Partially Drawn Links for Directed Graph Edges
[Burch et al., GD’11]
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link length
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Results – Error Rates

Is it possible to go from the
green node to the red node
via exactly one other node?

Which node has the highest
number of outgoing edges?

link length link length

% %

(42 participants, 2 repetitions, avg. age 24.0 yrs.)
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Let G be a subgraph of Kn.
Then G has an δ-SHPED for any δ ≤ 1√

4n/π
.

Thm.

Construction for δ = 1/4.

Drawn with a PED editor. Output of the algorithm.
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In other words:
In every set of n pts, there are Ω(log n) pts in convex position.

Tool: Every set of

f (N) =

(
2N − 5

N − 2

)
+ 1 ∈ O

(
4N

√
N

)
points has at least N points in convex position.

[Valtr, Tóth, 2005]

Actually: K165.
[Bruckdorfer, Kaufmann, Cornelsen, Gutwenger, Montecchiani, Nöllenburg, W. GD’12]
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Drawing Graphs on

Few Lines and Few Planes

Steven Chaplick Krzysztof Fleszar
Fabian Lipp Alexander Wolff

Julius-Maximilians-Universität Würzburg, Germany

Alexander Ravsky
National Academy of Science of Ukraine, Lviv, Ukraine

Oleg Verbitsky
Humboldt-Universität zu Berlin, Germany



Kuratowski’s Theorem

Thm. [Kuratowski 1930: Sur le problème des courbes gauches en topologie]
Let G be a simple graph. Then:
G planar ⇔ neither K5 nor K3,3 is minor of G .
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Thm. [Robertson & Seymour 1983–94: Graph minors I–XIV]
Every minor closed graph class has a finite obstruction
set.



Planar Graphs: Testing and Drawing

Thm. [Hopcroft & Tarjan, J. ACM 1974]
Let G be a simple graph with n nodes.
It takes O(n) time to test whether G is planar.

Robert Endre Tarjan
*1948 Pomona, CA, USA

John Edward Hopcroft
*1939, Seattle, WA, U.S.A.



Planar Graphs: Testing and Drawing

The photo of K. Wagner is by Konrad Jacobs – http://owpdb.mfo.de/detail?photoID=4390, CC BY-SA 2.0 de.

Thm. [Hopcroft & Tarjan, J. ACM 1974]
Let G be a simple graph with n nodes.
It takes O(n) time to test whether G is planar.
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Planar Graphs: Testing and Drawing
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Thm. [Koebe 1936: Kontaktprobleme der konformen Abbildung]
Every planar graph can be
represented as the contact
graph of disks (coin graph).
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Planar Graphs: Testing and Drawing
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á
n

F
á
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Planar Graphs: Testing and Drawing
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Thm. [Hopcroft & Tarjan, J. ACM 1974]
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It takes O(n) time to test whether G is planar.
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Thm. [Koebe 1936: Kontaktprobleme der konformen Abbildung]
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á
n

F
á
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Planar Graphs: Testing and Drawing

The photo of K. Wagner is by Konrad Jacobs – http://owpdb.mfo.de/detail?photoID=4390, CC BY-SA 2.0 de.

Thm. [Hopcroft & Tarjan, J. ACM 1974]
Let G be a simple graph with n nodes.
It takes O(n) time to test whether G is planar.

Thm. [Wagner 1936, Fáry 1948, Stein 1951]
Every planar graph can be drawn straightline.

Thm. [Koebe 1936: Kontaktprobleme der konformen Abbildung]
Every planar graph can be
represented as the contact
graph of disks (coin graph).
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Drawing Planar Graphs

Thm. [Tutte 1963: How to draw a graph]
A (3-connected) planar graph can be drawn
straightline (and convex); in linear time.

William Thomas Tutte
Newmarket, GB 1917–2002 Kitchener, Kanada
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Drawing Planar Graphs

Thm. [Schnyder, SODA 1990: Embedding planar graphs on the grid]
A planar graph with n ≥ 3 vertices can be drawn
straightline s.t. the vertices lie on a grid of size
(n − 2)× (n − 2).

K5 − 1 edge n − 2

Thm. [Tutte 1963: How to draw a graph]
A (3-connected) planar graph can be drawn
straightline (and convex); in linear time.

William Thomas Tutte
Newmarket, GB 1917–2002 Kitchener, Kanada

The Birth of Graph Drawing!!

Thm. [De Fraysseix, Pach, Pollack: Combinatorica 1990]
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Our Problem Today

Given a graph G , find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

ρ2
3(K6) = 4

For any planar graph G ,
clearly ρ2

3(G ) = 1.

We can consider ρ2
3 as a

parameter for classifying
non-planar graphs.

Call the minimum number of planes needed ρ2
3(G ).
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Complete Graphs Kn

• π1
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3(Kn) ≤ c(Kn, K3) = n2

6 + O(n)
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• π1
3(Kn) = dn/2e. Idea: Draw Kn in general position.

Place lines s.t. each covers two vertices.

• π2
3(Kn) = dn/4e. Idea: Place copies of K4 on parallel planes

and wiggle to avoid crossings.

• ρ1
3(Kn) =

(
n
2

)
. Idea: No line can cover more than 1 edge.

• n(n−1)
2·6 ≤ c(Kn, K4) ≤ ρ2

3(Kn) ≤ c(Kn, K3) = n2

6 + O(n)

use one plane for each K3

Results on Steiner triple systems imply that the edge set of Kn

can be covered exactly by copies of K3

iff n ≡ 1 (mod 6) or n ≡ 3 (mod 6)

[Kirkman, 1847]
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• es(G ): number of essential vertices in G

• es(G ) ≤
(
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2
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3(G ) ≥
√
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Additionally we can show: ρ1
3(G ) ≥ tw(G )/3
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π1
2 for Outerplanar Graphs

Outerplanar graphs are track drawable.
[Felsner, Liotta, Wismath, JGAA 2003]

For any outerplanar graph G : π1
2(G ) ≤ 2

(Similar to result by Bannister et al. [GD 2016])

On the other hand: There are infinitely many triangulations G with
∆(G ) ≤ 12 and π1

2(G ) ≥ n0.01



Further Problems that We Considered

• Variants with parallel lines: π̄1
2 and π̄1

3

• Topological variant—don’t insist on straight lines:
τ 2

3 (G ) = thickness(G ) = min. # planar graphs into which E(G) can be partitioned.

• Separation between ρ1
2 and ρ1

3:
there are planar graphs G
with ρ1

2(G ) = Ω(n)
and ρ1

3(G ) = O(n2/3)
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• We know n2/12 / ρ2
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Determine exact values!
n 4 5 6 7 8 9 >10
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• Is π1
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Known: π1
3(G ) ≤ 3 for planar graphs

and π1
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• Is ρ1
3(G ) = ρ1

2(G ) for trees?

• Bound ρ2
3 for 1-planar graphs or RAC graphs.
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