Drawing Graphs:

'___-“""‘“-_--—E-E;i".ﬂ_.r

e

’e&*"-‘s%.ﬂ.f_%

‘Geometric Aspects T

|

T

HlE

“Ei
E=an

- |

L —.\
T -‘
-

R

[l

l: ammnsl

Julius-Maximilians-Universitat Wiirzburg, Germany



GERMANY

Political Map

e

BELGIUM

i

- '_-II i
s Diisseldorf

. .J.

NORTH SEA

-

" Ho&h%hini-ﬂnﬁmiia
Cﬂhﬂl‘lﬂ Suagﬂn
Bd:ltﬂ!:l,,- "'1I
Koplenz.
wubu"

- 'E

L
A

2

= "{.ﬂﬂﬂmﬂ
‘

[

-
-

Fi

-

.'.
LUIEMBQ&JRG

J___
Eaaﬂa

= ¢
L'F-

FRANCE £

r:

_|'

? Frei

= -—- International Boundary
= Siate Boundary
[E] Mational Capital
O Province Capital
& Other Cities 4
100 150Km

a0
— E—

»

0

> o

.- Sajrhriicken
o -u,}rrfariam

“Bl‘!‘-'fﬁiﬂ {Eisenach °
Thuringia

Hesse

*Frankfurt-

'-mrqn‘l:.aa.
[Jill'mst.ﬂﬂt

]
! Heidelberg ]
»

n-
rttemberg

burg

e

FEe g S

SWITZERLAND

*‘* Gﬁﬂmm “ 4 Hale [Sa.alq}-

B -

[ i - 'I'{"
,F';ﬁ {U TR
JuT'm

J
Erl
| ] 1
,
et \

=

-
'|
= Muremberg

iy
» Heilbronn

O Stutigart

]
!

POLAND

Frankfurl {Oder)
1]

CZECH REPUBLIC

AUSTRIA

Copyright © 2011-12 www.mapsofworld.com



Ei

GERMANY
Political Map

NORTH SEA

————
\ K POLAND
{ 5 -
L
-~ o LI'E I
4 o ek o o E JFranhfl.lrl {Oder)
METHERLANDS ' o Hiidesheim® ranschwgld | Brandenburg
N £ Minstars Bistefald "\" : W i i JI..
o = A - mﬂ- =
b I -., Dassau b mES,
Dartmund hsﬁm-. -r-’”“& e,
ndhoven, .ti“"'h”'ﬂ . "' ’ 8

,ﬁmﬁ&ﬂ

) T e

f_ e 1Ehumd| S Fhemniz = T -l
"L - ="
BELGIUM ¢ Hesse ;.-I 0 zm‘,_r
J_J"“.,ﬁ e :h"'-"{'.\ - _;
Pt ; Frankfurt- 4 Hal in,
& i &
. 2 JBamberg b CZECH REPUBLIC
LUIEMBDIJRG f
L £ "\ -.L
1'.? .wag lII"--r.
X b
gilbronn - ,
~ - by g E
' Reégensburg -
5 Passay ., _ .
FRANCE ! g : Bavaria e -
I Ulms~ . g
J ! Augsburg _
[ . 1] E
--—- Internafional Boundary | ¢ Fraj 1 1 b
el 0000
ation =] L - o= Tt
O Province Capital o . ) -r"_l Garmisch- v "',& 1
*  Other Cities t‘; i N L A * AUSTRIA
0 &0 100 150Km SHTZERLAND{, [
—_— kY Copyright © 2011-12 www.mapsofworld.com |




GERMANY
Political Map

NORTH SEA

L POLAND
:.4 "
i, l
4 o £ Rt = A E JFranhfl.lrl (Oder)
NETHERLANDS ;' “ ' Hidesheim® , *Braunschweid | grandenburg A
., of Minslete  pigieteld : B s
L . { 'Duguu\t; B E:
- ,, - e A
Eindhoven, .ti“’““'ﬂ ;:’"""""""’ - Gﬁ"ﬁ"ﬂ?ﬂf B ¢ ey
mﬂ&.u':.w Lu LU
_.ﬁ I “\\m L 0 !_I-‘L.,
f_ _;. ;Eum Ehamnilz e - cE
"L - ="
BELGIUM ¢ Hesse i a Imkm‘,_r
}.-h\ .-
el

Frankfu rt-

CZECH REPUBLIC

] | .
gk International Boundary | ¢ F'm|h|_|-g : Munich e
State Boundary | i r

[®] National Capital 3 'Ei:vnah'am | ol e

8 Province Capital P i e T .

+ Other Cities i ";“" S W o ~! ausTRIA

RLAN [ o

0 50 100 150Km SATEE Di, w

——

x Copyright © 2011-12 www.mapsofworld.com



Julius-Maximilians-

UNIVERSITAT
WURZBURG




Julius-Maximilians-

UNIVERSITAT
WURZBURG




Julius-Maximilians-

UNIVERSITAT
WURZBURG




Julius-Maximilians-

UNIVERSITAT | |
WURZBURG ... Franconian wines!




R

. Vrio { Sander Diguglielmo | )
) Syliora / II Wilhelm J -
Unger | /) — |/
— | i r-l \ Kaplan Durocher |
- N, R
] 4 ., - S ,I Al | | - —
/ M | | L ; N
( Newton [ \ Ferdinand | - N
l / — 1 Miyazawa .
. ! g ] ) N =
~ 4 — / Fi L ™.
— ——— S .,
P Asano |
. . P |
[ Miura Egi
€ Ura rawin ommuni . | 4
_..-' Uno
_ ~ /
N T { Nishizeki S
N, - e, 1
I Y - ~ | P Rahman ~
| y o { Nakano |
{ 1 )
.| Misue \ N {I Wenger Sharir III \ Naznin
/ \ | Agarwal | |
P i - | Pollack [ | Yoshikawa Ghash P
— -~ . | o~
\ \ . -
Sugipsma Pach Tar0S pipepag \ g T -
Resi | . ——
r Carrington | — -
Stolfi 4 Maeda _— Taylor Toth Dyck \ ~—— .
{ -, : Wilsdon .
r 9 p
/ Chow N Hong it Thiele
.' eto . f
{ Prirchase Nickle /
hY Quigley Webber | Lyan Joevenazzo Alzohairi
! Rus} ¥ ~
III James Y Alt Classan I'
| Cohen . S |
ioter = Lin Lin MUY Fredrich Fekete Godau oo [ Wisielewicz  Riyyal
| \
| \ \
— // Kant Feng Huang Feng  Garvan Houle Merelr Bretscher Johansen | Hashemi
Yo 000N r | =
4 . Symvonis Tturriaga ~ /
f A Hes Grigorescn Bertgulp | [Vscimento = Wood Shermer \\__ I
A 2 b . Wismath
e Vogelmann - ides
| i Kia Bied] Whitesid . Vernacotola
| Steckelbachy ~ Fosmeier I L L T R Dien
Keskin ubeck Nishimura Felsner
« Madden g, Eades Hallett
f Papakostas = - Bertolazzi Lille Snoevink —— T\ ——— )
f| Riit i jmovic ndK'mhjng E"';ind!,GI L - \
Mehldan Kau Suderman Rosamo ' 1A00MO pover B
i 1 Matera Mareandalli ose X )
A Rosenstiel %"m miti  Tollis Batsista Foeesint Hernandez—Penver Tejel == "-\.\
bil Powers Felly N,
\ Do i Kuchem Castello Ragde WS Didimo Cortese Carmignani Leonforte Ramos s \_
\ grus A -
. Madden McCartin Patrignani TR e Gm;a_u'gﬁ"“m Noy Gareia \".
Himsholt . 2 Lenhart \
N K = Pizzonia g0 \
[ Gene Schank Fioleperpef FonS Liotta Bridgeman o~ Hurtado Cobos  Castro |
A _ Barbagallo  Italiano - —— \
) Freivalds Wagner : . -
\ Lesh A Finoechi \
| Cornelsen Kopl Vargiu Vi But . \ ) Dana \
| Kiknie ismara Binucel Rusu \ Marquez Seutcos |
| B Brandes Tamassia Demetrescu N\ : ]
| R Parise Tassinari e Y . Garrido {
[ Rucevskis Nonato ' ' b .
\ Fanto . y
| Pop 4 - y
Garg - "
\ |
N ~ Chan Pagner Apparwal
\ - Kosaraju U J
\ COtiEh Scheinerman {,"
- Meng  Dickerson /
i i Cheng Tanenmbaum |
Fialko Buchheim Barth o P ng |
Kobourov /
Brockenauefiegler / -
Lee  |Dillencourt Duncan e A T—
Hirschberg Sl / T _‘“\ -~ T y
Koch / # - {
Klau Ambras Theme Wenk ! N \ ] A
Alberts Hundack Ert Yee I,/J / Kara Kral N
Navabi ‘Wampler iy / Nyklova
K gkl 4 1
BeE Roxhorough _ | Jelinek Cerny Babilon
\ Pouchkarey Le Harding ‘/- | Eausuar
P~ [ 5
D —1 77— . Pitta / \ Dvorak — i Vondrak
Emden R. Gansner, Yifan Hu, Stephen G."Kobourov: >~ J / -
— — \ y

GMap: Drawing Graphs as Maps [PacificVis'10] ~— o/ T—




R

Vrto [

{ Sander ielmo L
) ( Diglein |
| Sykora / | Wilhelm /. )
Unger | /) — i
P { { \ Kaplan Durocher |
1 AN / | Alt \ \ o ———
/ e | | | ) :‘, \\-
f Wmiem f { Ferdinand | ~ / -
l / \__ B 1 Miyazawa
/ S / N
— Tt— .
. PR Asano ]
- - " Miura Egi \
e Grap rawing Community =
~ ~ /
______...r"\\\_\ ,/—-"/ T _‘h..___\ :I Nizhseki {\“'-.___
pd \ il . | — Rahman .
i £ | reba ﬂkﬂ",l' §
| / Aronoy | B \
.i Misue .. \ Woager Sharir III \ Narnin
/ h al | (
S N\ — |I A potack | | Yoshikawa Ghash v
—— - 1 " il
i Sugiyama Pach Tardes oo o II\. \ TokuyamaWatanabe - -
5] S o
Carrington | — \\ //
' Stolfi Maeda Taylor Toth ~—————
{ Lozada Abelson Wilsdon . -
| e oo N, G St | rhicie autors who have
o Nickle c . . _/
\ N L Quigley Webber | Ly published an article in - Alsohaie
f ¥ [
| James Alt  Closson . |
[ Cohen S| R SN VA the Int. Symposium on | ... ..
! er . .
| \ VALY NN Graph Drawing in these
// Kat  Feng Huang U8 Garvan e Bretscher | Hashemi .
. / ears N
N - Grigorescu Bertault | Nescimento et Wood Shermer e y N —
’ Vopelmann = Heg ‘Wismath e
f b e Xia Bied) Whitesides : Vernseotola
| Steckelbachy, osmeier I L
| ubeck Nishimura Felsner \
o e Madden g, o Eades Hollett = oty | T—
ol Papakostas o= 2*Viin Gy _ - - |
Mehidan Kau Suderman Rosamo 18C0MY poyer Bose
Rosenstiel R akouti st Tollis / MatersMuccndatt Toint Hernandez—Penver Tejel —
{ Ludwig Powers - Ragde Fellows  Battista = Leonforte Ramos N\
\ Kuchem . Didimo Carmignani n . Hernando )
. mMsdde.n McCartin Patrignani i e Gmia-uﬁﬁ"“m Noy Garcia \".
. Himsholt = e \
Liotta Bridgeman PiZ200i2 pforian; o~ Hurtado Cobos  Castro |
W Barbagallo  Italiano P T 1
agner Lesh A Finoechi \
v . - N Dana \
Blair “fEY Vismara Bul Binucel  Rusu s P
Brandes Tamassia Demetrescu "\ |
Rohrer Parise Tassinari Chanda \, . . Gerrido I'.
Nonato J . /
Fanto s “ /
Pap v e
Garg - _.“/ .
Chan agner | |l
; Kosaraju —
K fghen Goodrich Scheinerman {,'/
Meng Dickerson III
Klein Fialke Buchheim Barth Cheng Tanenbaum |
Leipert a7 Kobouroy Galer )
E I E- f" o
R Gutwenger " tee [omencount Duncan { B AT
; = YANARY Efrat / P \ e T py
e Klau Ambras Theme Wenk b \\\ -
Hundack Yee - / Kara Kre! _
. Naker Alberts Hunda Navabi Erten Wasngler f './ Nyklova
T\ Kruger Roxborough N S | Jelinek Loy Babliox:
"'\ Pouchkarey Le Harding " } | Pangrac
N f 5,
. — i Pitta ) . Dvorak - Vondrak
Emden R. Gansner, Yifan Hu, Stephen G."Kobourov: > , \ -
. . -y — N\, _ T T T S _;"I — _—\\__ A
GMap: Drawing Graphs as Maps [PacificVis'10] —



R

Vrto [ :;" Sander Diguglielmo
| Sykora 4 | Wilhem /
Unger | /) — |
— { { \ Kaplan Durocher |
| AN / | At \ \ P .
/ ~— e — | | _ )
{ Newton { Ferdinand } ~ o/ \_
l ! \_ R \ Miyazawa -\
\\\\ /.' \\\--- ,"l ;_- ‘-\_\ - B )
—— — o _ p— N
[ ] [ I,/ Miura Egi "._
e Grap rawing Community =
~ /7
— ._.-f"‘\\_\\ ’,___../ T — _‘h..__\- :I Nizhseki "\\_.
y \ j’._.f-" “‘-\.\\I | — N 5 Rahman ‘“--.‘I
| | F Aronoy | l \
i Misue | Woager Sharir \ \ Narnin
! - | |
i al \ |
e N\ — |I AL ack ' | Yoshikawa Ghosh v
e — 1 ,
Sugipsma Pach Tar0S pipepag N TR T ) —
Raosi 'I — S =
Stolfi Maeda Taylor Toth Dyck e
Lozada Abelson Wilsdon ~ .
Ander o B st | Tie ___ vertices: autors who have
Neto - — e
Purchase Nickle N . . . S i
Quitley Webber | 1 Joevenazao - ublished an article in I
. \ Ruskey 9 ™ Py - P f
| ames - |
| Cohen L RN A ~~h the Int. Symposium on | ... ..
{ - - - I'.
| \ VA AN Graph Drawing in these
_ // Kat  Feng Huang C0E  Garvan 3 Bretscher Johansen Hashemi )
\ - Neschambn Symvonis - Iturriaga yea rs '\\\ . _/.-"I
_— N Hes 'Grigorescu Bertault Wood Wismath ermer _—

_ fopelmann Whi o

I Fosmeier e Biedl it Meijer . Vernacotola

J i Steckelbachy |} ook N Nishimura Lubiw Felener

'/ Hx Papakostas N - o Bertolazzi Lille Snoeyink =S . Y
Rit Dujmovic  itehing s : -
r Mehidan Kaufmanp Suderman Rosamo 18C0MY poyer Bose
| Rosenstiel ulis Ml Tollis S Matera Marcandalli Toussaint T Tejel —
e = Kuchem Castello The S Didimo Cirtem Carmignani Lounfte : Hernando
Ik\ mMsdde.n McCartin Patrignani - e Gm;a_u'gﬁ"“m Noy Garcia \".
“ Himsholt Pizzonia nhart
| Gene Schank Higlepey R VA Liotta Bridgeman HEHan i o~ Hurtado Cobos Castro \
L Barbagallo  Italiano 1

b Frefyeidta Wagner Shubina Lesh 4 Finoechi
| Cornelsen Kopl Vargiu . But . Dana \
| Vismara Binucek  Rusu Marquez Stadens

Kikpee Marks Demetresca '-\ : |

] Benkert Baur Parise Taecinari \ _ Garrido |
[ Chanda | .- o |

| .- Nonato / —

I",I Fanto N Pep /, \ B -;).
arg . [ . .
— Chan Wapner | | coarv / edges: pairs of authors who

\ Kosaraju —/ o

| 1 /

., Goodrich Semirmemem / have published together
o Meng  Dickerson (

Hirschiberg Efrat _..r';
Wenk
Yee >
Alberts Hundack et Wamgler .;..
\ Roxborongh : __.."'I
"'\ Pouchkarey Le Harding vl
B P |
Emden R. Gansner, Yifan Hu, Stephen G “"Kobourov: >~ ™

GMap: Drawing Graphs as Maps [PacificVis'10] .

Cheng Tanenhbaum 'I

| Jelinek

Kral

Vondrak




. Vrto ,l: -I Sander Diguglielmo I! '“'-.._\.
\"I Sykora s | Wilhelm |
Unger | p — |/
. __ ( | Kaplan Durocher |
-“| /! \\\‘_ - II Alt I| I \
| Nebin e cerand | - ,. ‘-\_\_ -
l o ;- \__ o N h .! Miyazawa \
\\\ -— -/l \\"- . ,’J ,r'; N - ey
—_— S  / .
" ] |'/ Miura Ei
[ he Graph Drawing Community 1994-2004 | . |
~ /
T ‘: Nishizeki S
(/— \\\ _ “'a_\_‘ I Rahman ey
| ya Aronow ) Chrebak Nakano
| Misue \ FI Wenger Sharir III \. Narnin
- i : \ — |I 207 Pollack | ' Yoshikawa Ghosh A
o Sugiyama : Pach T2rdos pypog A "\ B o <
P Rosi oL . \ — \\-. ///
Stolfi Maeda aylor ~— e ——
' Lozada Abelson Ty Wilsdon o N .
Alder chon e seott | et __ vertices: autors who have
Teto Nickle BN c . .
AN Quigley webber | Lyen Joerenazzo \ published an article in Aot
I'-. Joubhes Ruskey L At Closson h I 5 . [
.-"I e o Lin Lin M Friedrichf Fekete Godan ¢ rtshore the Int. ymposium on ( Kiidewiez Ryl
" \ V) NN Graph Drawing in these
- // Kat  Feng Huang CIE  Garvan - Bretscher Johansen | Hashemi )
- \ y Symvonis Iturriaga yea rs '\\ /
et Hes Grigorescu Bertgulp | [Vscimento 2 Wood T Shermer N
- Vogelmann i
-I Steckelbag Fosmeier Ha Biedi Yhitesides Meljer 7 Vernacotola
| il hﬂubeck Nishimura vl Felsner \
Ve Keskin Madden g, i Eades Hallett Bertolazzi Lillo Sooaxink . . — R
.-"I Rt Papakostas Puimovic /I EIGindy . v = -
(M ey Tolli Suderman Rosamond (<112 Giacomo poyer MateraMarcandalli Bose Toussaint
[ Rosenstiel Mili 15 / Hernandez-Penver Tejel —
Ludwig Pawers Ragde Fellows  Dattista — e
Kuchem Castello Didimo €™ . Lem /
. mMsdde.n McCartin Patrignani — <y TR e Gm;a_u'gﬁ"“m Noy Heptendp Gareia \".
. Himsholt s Lenhart
. = Mariani -
\ Freivalds = B i =~ W, N = - Barbagallo  lialiana — S AN
\.'. rel ag'ner A . . 9
I| P Blair R Vargit v, Bt N — Binueel  Rusu \ Do Marques
| L) Brandes Demetrescu ."'\ AR
| Benkert Baur s Parise Taecinari A \ — Garrido
|'I Rucevskis Nonato /J' -
I",I Fanto N Pep //, \ - -;).
— Chan g |\ / edges: pairs of authors who
\ Kosaraju = 4 .
. Gooarkh soeeen\__ have published together
\ AN Meng  Dickerson I -
Kie Fialko Buchheim B Cheng Toneobonm | countries: strongly connected
=T Odenthal G |
Kobourov b h I
J Gutwenger Lee |Dillencourt Dimcan — e
: Koch BESHbers e I < .
\'\\ Kanne B Klau Ambras Theme Wenk / Yoo e A A
\\.__R L Yee ."’J Kara -
- - @ Naler Alberts Hundack Navahl Wampler _,"I / Nyklova
o \ Lyt Roxborough ) _ S | Jelinek b Babilon
\ Pouchkarey Le Harding i | Pangrac
. o ] —— = | \\\ arak e . Vondrak
Emden R. Gansner, Yifan Hu, Stephen G“Kobourov: >~ ™= N —
GMap: Drawing Graphs as Maps [PacificVis'10]

R




R

Vrto f|' :;"I Sander Digugliclmo |
\"I Sykora s | Wilhelm |
Unger | /) — |/
Sy { [I Kaplan Durocher |
. ™, | 1 e T
' / N | An '. ' \
| - / }
l Newton { Ferdinand | — e ¥ -
l \_ S i 'I Miyazawa 5
\ / Y ) b —
\\___ / N ) y, \_ .
o — o s .
[he Graph Drawing Community 1994-2004 | T -
p g y 1994-2004 | .
T pr e { Nishizeki .
Ve N, = .y Rahman .
II( \ Y. ) |' | Chrobak Nakano
i Misue ’ Woager Sharir | \ Narnin
/ | |
i : \ - |I 207 Pollack | ", Yoshikawa Ghosh A
- i e \ Y 7 -
Rosi BIELER Pach Tardos popog \ \ T ) -
ar on | = — /1/
he Stolfi e Maeda et Taylor Toth Dyck \ A ___ 4
: Wilsdon ~ .
[ chon L B sot | Thicie ____ vertices: autors who have
{ Purch Nickle ™ . . o J
N A Quigley wWebber | Lyan Joevenazzo \ published an article in Aushair
f y
| James At Closson . |
| » Cohen i Lin MOy pao Eekete Godmn (oo the Int. Sym posium on | e e
{ = - - I'.
'| \ Graph Drawing in these
- // Kat  Feng Huang Feng  Garvan Houle DN, rriacter Johansen P g ' Hashemi )
- \ _.-"I Symvonis Iturriaga yea rs I\\ /
Y, Vogemann — Hes Grigorescu Bertgulp | [Vscimento Wood e Shermer " ——
[ . .4y Whitesides _
.'I sm.lmhnumkl?'osmmr e Dt Nishimura TS Lubiw Y b N
e L Madden g, Eades Hallett sl o~ i -
.-'II Rt Papakostas Puimovic ndKi[dﬁng EIGind}GI Bertolazzi Lille Snoeyink . — \
I/' Mehldan Kau Suderman Rosamo lacomo Floyer B
' Rosenstiel T outi s Tollis / Mytera Marcmmdall AN Foamsint Hernandez—Penver Tejel S
g Ludwig Powers . Ragde Fellows  Battista ok Leonforte Ramos
Kuchem R Didi " Carmignani : Hernand
k\ mMsdd.e.n AN Ruml MeCartin Pat:r.ignani o HnmLe MeAllister  Gomez Gmia—uﬁ%ke“m Noy Ay Garcia \".
. o S T nhart
| Genc Schank Higlepey ] R L e Liotta Bridgeman RN Mar]aniB o 1t o~ Hurtado Cobos Castro
N arbag fang ——
\"'. Freivalds s et Wagner Shubina eh Vargiu A Finocchi ;\. D
| Blair Vismara Binuweel  Rusu Marquez Mateos
| L) it Brandes Marks Parkie Tasss . Demetrescu "\ -
[ Benkert assinari (Chanda '\: — - 2l
[ Rocewis Ths Nonato ) .
\ an| / — 7
\ Pnp /’ "\..\\ - 4
Garg r . —
= Coan Woner | e /) edges: pairs of authors who
\ Kosaraju —/ o
2, Gooarkh soeeen\__ have published together
) Me Dickerson [ .
Kin | Fislko Buchheim mars o X \ Chang Tanenbaam | countries: strongly connected
Kobouroy “4*
rean Brockenaudfiegler X 5 y SUbgraphS (ClUSteI’S)
Gty o Thagan Efrat 4 — Y P S
\ Kanne felckifcher Koch Hirschiberg N S ™ )-/
‘\\ Klau Ambras Theme Wenk / — _ - p
\.__,H___ = NI Alberts Hundack radas - . Yee -~ . Kara Nyiona
e . aval ampler I_; -
i N\ Kruger Roxborough — | Jelinek s Babilon
N\ Pouchkarey Le Harding 4 | S
. T Bi ' Drvorak — Vondrak
Emden R. Gansner, Yifan Hu, Stephen G “"Kobourov: >~ ™ . J ’ ’ -
GMap: Drawing Graphs as Maps [PacificVis'10] —



f Joupdan
| Hashemi
y Rival Zaguia
| Kisielewicz ]
ra S — T, B II 2
i S o / \
{ Twarog { h g ‘
\ Lambe A
\. JI e
s P ¥, N
£ T Y
/ Cruz — Moshah N —
N F; Bonichon ) ~
y \ f ZickFeld P \
y RUSU  Chanda ' - Massow T Sopri
— - Felsner ! Troter A
- Mumford d (™ ! Y
Lak Evanc g
. 2 ,’/
T Gethner {
- |
Joevenazzo Snoeyink [:FII { T
/ \ / ~
Wilsdon 4 —— ™\
) MeAllister Ferran Y
p Penteheva A\
) A 4 T
y Evereit Niekle p.; Hutchinson Tl \
PN - 4 |
. I B, Fi Tanenbaum
- B — .
\.‘. .;F Zay — Pouchkarew Thame
: — ajer
Stefankovic
" - Schmidt Yidiz Hundack
Schulz k= s e
] ~— Epmln Oudenthal | Dillencourt
'.I Duracher Perean . -
| Kaplan (rassmer Gul wer

Vasilin  Diguglielmo Estrella-Balderramma =

-

| Haitte Bamiet Samdr|WelsidnahionBrackmines o e
J Koff—r | ;;",‘ S —

\ Ferdinand — Adt Ambiras 7, -
o Wilkem Ebnér ¢ Cappos’ z — Efeal I
Y Yee = Prevtveka
— Buchheim Erten -
— Kumar Wampler _Harding mmmKr S e
\ A Abello Feredl o
\ ) Forrester -
" Yusufov'. Ngvabi Gansner R Jelinkovs N
5 . s Dverdk |
| Suechy Kidra
Dalrkin— Koutsofins — Jeliek {
. Roxborough 1 b
/" Gotsman e EIS vy oodhylp | Trimbach N Keszeph  Pinehasi e S -
{’ | Nyklovd
. Harel T2¥lor : . N |
e Pangrehe  Vondrik |
Carmel " o II
N Murtagh \ S " Valtr 9
Maeda *
\ » Triantafilon  Papamanthou o Maxavi
p [ Mili Doerr Apizyal Matousek |
[ Misue Marriott ¥ Castents — Shatlr — poliack -
! N o =
. Six / b Dhandapani | T
N Dogrusoz Papakostas ’\ ™, el /
“ | — Basu v
Kakoulis Giral N AN ~
\ Cethtas Civeil S
) Djidjev \ |
k : Demir Bocek=Rivele |
— Unger Gene i
| Lyme Magdon~Tsmail
.‘\ Munoz Frelvalds 8 —
— i Kikusts o
_ Frick —
Sablowski R iddg [
Bruf  Yogelmann -~ |
-"I: mk‘in _-" .H\ B J
[ Ludwg Mehidau /,.
" —

—

e The Graph Drawing Community 1994-2007

Diehl Poml |



I" Jourdan
| Hashe
Y, Rival Zaguia
| Kislelewicz ;
- \ ~
N - Alzohairi  /
/ - L __\\_ /; .
f/_- —_— }
. A -
R -
Maoshah N —
Banichon Ziekfeld P \.\t
£ "'\-\.
Fel Dangelmayr ."'. = Sm,rj \_._.\
' Tateors Ewvans J
Leonfarte ) 4

. J
T Hul ™ _/ _
'\.‘ ¥ N " Pouchkarev Thame
p— Pelsmajer T
Stefankovic - . Schmigr Yidiz Hundack Aloupis
S Chimani Barth Gartshore, |
- Schulz Odenthal | Dillencourt Clossan |
| ~Klein Kupke i
h Duracher Pmn'-?.-—- o Ty
| = .
J Kaplan Gassmer Gul 3
\ Vasilin  Digugliclme Estrella-Balderratma ==
[ Haible—Bander Sander| W SS e -,
! - ]
S\, Ferdimand Al Py g
h. — Willem Ebwer ¢ Capposf Praytycka
~— Buchheim Kratochvil ~C=—
—— Kumar .
A Py Abello s 1 Zih, Olatioes
_“ "-.\ Yusufov . agg e Forrester | G nener i \ 7 e Pergel 1oinkovs k\\:
., ' Suchy Kira S
[ Jelinek {
_ _ Tdth \
Roxhorough '\.\ Cerny Krdl T
. \ Keszeeh  pinehasi
(; Gotsman ? Kyiel Nyklova
b Koren |/ Pach Paviigyi— Tardos ©
.  Hare} Tavler ~ Pangrehe  Vondrik |
\ Wenger \
 Caras Abelson s — Marcus Valte Babilon
\ Maeda Mortagh Triantafilon Papamanthou Aronoy Nazov
" Sugigima Mili Doerr Apizwal Matousek |
Xia > Sharir -~
/" Misse Marsiolt Castells Pollack . -
L‘ | I‘Bpu!msl.as 4 __ Dhandapani ’,-'
— ' ; Ly N b Basu /
Eckersley Kakéulis Giral —y /
A Stuekey Cethytas Civril \—— 4
" Cohen Ruskey Djidjex \ |
Healy : —Ri
( an Chaw deMendonga Neto Unger e Demir Bocek-Rivele :
\  Lyneh Kuusik . Tors ek N . Magdon=Tsmail ___/”
I‘\ Harrigan James Lozada Rosi n Sykora . /
— — / \ Newfon | Kikusts -~
— / ™~ / . Frick .’_
~~ ' —_— T .'I
| Purchase ," — : Sahlawski = u ;
| Carrington ( ___.-' Bruf  Yoselmann o J
4 F F Keskin / ————
‘l Alider | | Ludwig Mehldau ~
/  Hoggan A N = L~
vl —
P Giirg /!




I" Jourdan
| Hashe
y. Rival  Zapuia
| Kisielewicz ]
\ =
o — T
: — — "

Moshah b,

e Ziekfeld
Fel Dangelmayr

. J
. ) - -, _ .
'\.‘ ¥ S " Pouchkarew Thame
. e Pelsmajer —
Stefankovic ; Schmide Yidiz Hundack Ahonpts
Schaefer - . Barth Gartshore |
Chimani
- Schulz Kupke Odenthal | Dillencourt l'.‘lmn"
) CKled .
h Duracher Pmn-;____ Kl_p oy
| y
J Hapigh Gassner Gul A L2 el
\ Vasilin  Digugliclme Estrella-Balderratma ==
(" Haible  Baudel Sander ““W
! W TR
S\, Ferdimand Al e
N . L Ebner  { Cappos F——
- Buchheim Kratachvil Vyskocll |
— Kumar A
- Okamote
‘o N Abdle T P Pergel o0 N
\ ‘sl Navabi Wopner ¢ _— \
™~ Suehy Kira
' Jelinek {
_. Tith \
- & - X erng Kril T
4 tsman e N Keseeph  Pinehasi €
{ ©* ] —k Nyklovi
A "~ Pach Pavélgt  Tardes o
" Harel Tarer Rt 4 Pangrehe  Vondrik |
\ Wenger \
\ Cabui P ; = Siareas oy Biblon
\ Maeda  Mortagh Triantafilon Papamanthou Aronoy -
" sagien Mili poerr Apizwal Matousek |
R Castens . Shafie — pongck J
| Misue Man‘i_eﬂ, v — N
L | Papakostas / — Dhandapani
S~ . He - y Dugmmz \\ N Basu y
\ Eckersley Kakéulis Giral PO S
N Stuekey Cethntas Civril TS \----——-.. _/’
" Cohen Ruskey Djidjex \ |
Healy Demi ~Ri |
( ealy Chow de Mendonga Neto i ol = Bocek=Rivele |
E v A
- Kuusik Stolfi Mo . Magdon=Tsmail -
"\ Harrigan Jathes s Rosi Vs : valds ) /—
T o / \ I Kikusts -
— / ™~ _ . Frick —
| Purghase .", Bl T . Sablowski h . ;
| ucevakl
. Vogelmann
| Carrington Brufi A~
{ ’ ( / Keskin | -~ )
| L ) | Luiwig Mehidau y
/' Hopgan , ‘\\ . o
/s ~ —_— -
P Giirg /!




o~ ) &
- _""\.‘. p ]::::1 ) N ~/ Pouchkarey ., o
§ A er

Stefankovic - . Schmige Yidiz Hundack

: Schaefer Chimani Barth

. Sehule i Kupke O%eathal| Dillencourt
h Duracher Pmn':—-. R,
| Kaplan Gassner Gu wenge -

Vasiliv - Digagliclme Emua—liﬂq.-._rrnma E
[ Haible Baude Sander|*Veiskir ey
/ g Kcﬂl—'_"'_"_w_ ]
", Ferdimand At e,
. _ ‘Wilhelm Ebmer Cappos

N Py Abélla
Yusufov . Navahi

Roxborough
{';
b Taylor Koren

.. Harel
Carmel

Abelson

b Lynch
~_
.
\—_
Purchase
|
| Carrington
| Allder
(/) Hoggan /__-
- Gilrg f
1 Diehl  Pahl y
“'\ //’

Banichen

Felsner

r/ o —_—
-~
.\\
Mosbah N —_—
zuma/ il N
Dangelmayr ! Safari e
ngemay Trotter \
Lakson
Gethner {
)
Snoeylnk n |
McAllister

Aloupis
Gartshare |

Closson |

Morin
Pér Aﬂ? :
Telle G

II- - J
| Hashe
/ Rival Zaguin
| Kislelewicz
1 5
Alzohairi Y
—— / X

Pergel '
Wagner  Goaoc edmora Dersk \
cle Suehy Kara
Bt elinek {
_ Téth !
A" Vv B
N S : Cerny Kril
Nyklovi
_ Pach —Patvilavt  Tardos Kyoel
N Pangre - Vondrik |
: . R * Ny Bibin
Triantafilou  Papamanthou Afwnoy Maxovi
Mili Doerr Apzwal Matousek
Xia p Sharir
Castelli - Pollack )
Dogrusoz Papakostas 4 N Dhsptapent /)
J — Basu v
e Giral S ‘\ ~
Cethrtas Civril —
Djidjev |
5 Demir Bocek-Rivele |
‘nger Gene l
Mapdon—Tsmail 7
Munioz Freivalds nplor /—--‘/
0 ] I(.I !lS 'Jd’
Frick —
— Sablowski s |
J Bruf  Yogelmann . |
/ Keskin .~ ~_
| Ludwig Mehldau J
A —
-




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

e slope number
o arc number
o plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

e slope number
o arc number
o plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

e slope number 6 (7)
e segment / arc number
e line / plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

e slope number 6
o arc number
o plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

e slope number 5
o arc number
o plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

e slope number 5
o arc number
o plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

e slope number 5
o arc number 6
o plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

e slope number 5
o arc number 6
o plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

e slope number 5
o arc number 6
o plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

e slope number 5
o arc number 6
o plane cover number

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

e slope number 5
o arc number 6
o plane cover number 3

Geometric restrictions

Making crossings nicer

Eliminating crossings




Outline

Drawing graphs with low visual complexity

Geometric restrictions
e point-set embeddability
e tracks

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions
e point-set embeddability
e tracks

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions
e point-set embeddability
e tracks

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions
e point-set embeddability
e tracks

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions
e point-set embeddability
e tracks 3tr. = 3cr.

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions
e point-set embeddability
e tracks 3tr. = 3cr.

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions
e point-set embeddability 1
e tracks 3tr. = Fcr.

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions
e point-set embeddability
e tracks 3tr. = 1 cr.

Making crossings nicer

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings

e (smooth / slanted) orthogonal drawings
e edge casings

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings

e (smooth / slanted) orthogonal drawings
e edge casings

Eliminating crossings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings

e (smooth / slanted) orthogonal drawings
e edge casings

Eliminating crossings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings

e (smooth / slanted) orthogonal drawings
e edge casings

Eliminating crossings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings
e edge casings

Eliminating crossings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings
e edge casings

Eliminating crossings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings
e edge casings

Eliminating crossings

'




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings
e edge casings

Eliminating crossings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings 15 / 35 / 21 seg
e edge casings

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings 15 / 35 / 21 seg
e edge casings

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings 14 / 35 / 21 seg
e edge casings

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings 14 / 35 / 21 seg
e edge casings

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings 14 / 35 / 21 seg
e edge casings

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings 14 / 35 / 21 seg
e edge casings

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer
o RAC drawings v

e (smooth / slanted) orthogonal drawings 14 / 35 / 21 seg
e edge casings

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

o RAC drawings v
e (smooth / slanted) orthogonal drawings 14 / 35 / 21 seg
e edge casings min-max

Eliminating crossings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings
e partial edge drawings
e confluent drawings



Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings
e partial edge drawings
e confluent drawings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings
e partial edge drawings
e confluent drawings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings
e partial edge drawings
e confluent drawings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings
e partial edge drawings v
e confluent drawings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings
e partial edge drawings v
e confluent drawings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings
e partial edge drawings v
e confluent drawings




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings
e partial edge drawings
e confluent drawings

<N




Outline

Drawing graphs with low visual complexity

Geometric restrictions

Making crossings nicer

Eliminating crossings



What | Won't Talk About



What | Won't Talk About

Lombardi drawings

Variants of monotone drawings

Graph representations beyond dot-link diagrams

Topological stuff



What | Won't Talk About

Lombardi drawings

Variants of monotone drawings

Graph representations beyond dot-link diagrams

® Intersection representations

e contact representations (e.g., balls in 3D)
e visibility representations (e.g., 1-bar)

e map graphs

Topological stuff



Drawing graphs with low visual complexity

e slope number
e segment / arc number
e line / plane cover number



Slope Number

Def. Let G be a graph

The slope number of G, slope(G), is the min. number
of distinct edge slopes in a straight-line drawing of G.



Slope Number
Def. Let G be a graph

The slope number of G, slope(G), is the min. number
of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) >



Slope Number

Def. Let G be a graph
The slope number of G, slope(G), is the min. number

of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2



Slope Number

Def. Let G be a graph
The slope number of G, slope(G), is the min. number

of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2 and slope(G) > §(G).



Slope Number
Def. Let G be a graph

The slope number of G, slope(G), is the min. number
of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2 and slope(G) > §(G).

Is there some function f s.t., for any G, slope(G) < f(A(G))?



Slope Number

Def. Let G be a graph
The slope number of G, slope(G), is the min. number

of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2 and slope(G) > §(G).

Is there some function f s.t., for any G, slope(G) < f(A(G))?

No.



Slope Number
Def. Let G be a graph

The slope number of G, slope(G), is the min. number
of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2 and slope(G) > 6(G).

Is there some function f s.t., for any G, slope(G) < f(A(G))?

No: For sufficiently large n and A > 5, there is a G with
slope(G) > n!/2=01/4)



Slope Number

Def. Let G be a graph
The slope number of G, slope(G), is the min. number

of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2 and slope(G) > 6(G).

Is there some function f s.t., for any G, slope(G) < f(A(G))?

No: For sufficiently large n and A > 5, there is a G with

slope(G) > n!/2=01/4)
L1-0(1/4)



Slope Number

Def. Let G be a graph
The slope number of G, slope(G), is the min. number

of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2 and slope(G) > 6(G).

Is there some function f s.t., for any G, slope(G) < f(A(G))?

No: For sufficiently large n and A > 5, there is a G with

slope(G) > n!/2=01/4)
L1-0(1/4)

Yes: for interval, co-comparability, and AT-free graphs.



Slope Number

Def. Let G be a graph
The slope number of G, slope(G), is the min. number

of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2 and slope(G) > 6(G).

Is there some function f s.t., for any G, slope(G) < f(A(G))?

No: For sufficiently large n and A > 5, there is a G with

slope(G) > n!/2=01/4)
L1-0(1/4)

Yes: for interval, co-comparability, and AT-free graphs.
Yes: f(A)=A+1



Slope Number

Def. Let G be a graph
The slope number of G, slope(G), is the min. number

of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2 and slope(G) > 6(G).

Is there some function f s.t., for any G, slope(G) < f(A(G))?

No: For sufficiently large n and A > 5, there is a G with

slope(G) > n!/2=01/4)
L1-0(1/4)

Yes: for interval, co-comparability, and AT-free graphs.
Yes: f(A)=A+1 if edges can have one bend.



Slope Number

Def. Let G be a graph
The slope number of G, slope(G), is the min. number
of distinct edge slopes in a straight-line drawing of G.

Obs. For any G, slope(G) > A(G)/2 and slope(G) > 6(G).

Is there some function f s.t., for any G, slope(G) < f(A(G))?

No: For sufficiently large n and A > 5, there is a G with

slope(G) > n!/2=01/4)
L1-0(1/4)

Yes: for interval, co-comparability, and AT-free graphs.
Yes: f(A)=A+1 if edges can have one bend.
Yes: for planar partial 3-trees, f(A) = A°.
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Def. The segment number of G, seg(G), is the minimum
number of line segments formed by the edges of G in a

e drawing, [So o) Tl oo e 7]
Obs. For any G, seg(G) > #(odd-deg. vtc. of G) /2
seg(G) > slope(G)

Thm. For any tree T, seg(T)=n(T)/2, slope(T)=|A/2].
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Thm . G [ignoring const. additive terms] Seg( G) arC( G) Seg(G) is NP-hard
to compute for
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Example

[Schulz, JGAA'15]

10 arcs

12 planes in 3D Schlegel diagram

Study
this

10 lines; 6 slopes; 13 seg.

model!

3 circles + 5 lines

[9T.'yl'g ‘wisyog]
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Track Number

Def. A t-track layout consists of amap 7: V — {1,...,t}
and orders (<;)1<i<: on V; := 771(i) such that
— V, is independent and
. X
— there are no X-crossings: 7

The track number tn(G) of G
Is the smallest t such that
G has a t-track layout.

Thm. Any t-track G has a s-| drawing in O(t) x O(t) x O(n).



Track Number — Results

graph family track-number reference

n vertices n trivial

m edges 15m?/3 Dujmovié and Wood [28]

m edges, max. degree A 14v/Am Dujmovi¢ and Wood [28]
no Kj-minor O(h3/ 21/ 2) Dujmovi¢ and Wood [28]
genus y O(y1/2n1/2) Dujmovié¢ and Wood [28]
tree-width w 3w. 64" =3w=1)/9 " Dujmovié et al. [26]
tree-width w, max. degree A T2Aw Dujmovi€ et al. [26]
queue-number k, acyclic chromatic number ¢ c(2k)c~! Dujmovi€ et al. [26]; see Theorem 2
queue-number k 4k - 4%(2k=1)(4=1)  Theorem 8

path-width p p+1 Dujmovi€ et al. [26]
band-width b b+1 Lemma 17

series-parallel graphs 15 Di Giacomo et al. [21]
Halin 8" Di Giacomo and Meijer [23]
X-trees 6" Di Giacomo and Meijer [23]
outerplanar 57 Lemma 22

1-queue graphs 4 Theorem 11

trees 3 Felsner et al. [32]




Making crossings nicer

e RAC / LAC drawings
e (smooth / slanted) orthogonal drawings

e edge casings
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— edges enter vertices only in the four ports N, E, S, W,
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— consecutive segments make 135° angles,
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(Slanted / Smooth) Orthogonal Drawings

Def. In a slanted orthogonal drawing,
— edges enter vertices only in the four ports N, E, S, W,
— edges are sequences of hor. / vert. / diag. line segm.,
— consecutive segments make 135° angles,
— only diagonal segments cross.

Def. In a smooth orthogonal drawing,
— edges enter vertices only in the four ports N, E, S, W,
— edges are sequences of circular arcs or line segments,
— consecutive arcs meet In horizontal or vert. tangents.



(Slanted / Smooth) Orthogonal Drawings

Def. In a slanted orthogonal drawing,
— edges enter vertices only in the four ports N, E, S, W,
— edges are sequences of hor. / vert. / diag. line segm.,
— consecutive segments make 135° angles,

—|only diagonal segments cross.

Def. In a smooth orthogonal drawing,
— edges enter vertices only in the four ports N, E, S, W,
— edges are sequences of circular arcs or line segments,
— consecutive arcs meet In horizontal or vert. tangents.



(Slanted / Smooth) Orthogonal Drawings

Def. In a slanted orthogonal drawing,
— edges enter vertices only in the four ports N, E, S, W,
— edges are sequences of hor. / vert. / diag. line segm.,
— consecutive segments make 135° angles,

—|only diagonal segments cross.

Study:
Which
crossin

do we
allow?

Def. In a smooth orthogonal drawing,
— edges enter vertices only in the four ports N, E, S, W,
— edges are sequences of circular arcs or line segments,
— consecutive arcs meet In horizontal or vert. tangents.



Slanted Orthogonal (slog) Drawings

[Bekos, Kaufmann, Krug, Ludwig, N3her, Roselli JGAA'14]

I

I

—




Slanted Orthogonal (slog) Drawings

[Bekos, Kaufmann, Krug, Ludwig, N3her, Roselli JGAA'14]

e Can compute bend-opt. slog representations via network flow.

I

I

—




Slanted Orthogonal (slog) Drawings

[Bekos, Kaufmann, Krug, Ludwig, N3her, Roselli JGAA'14]

e Can compute bend-opt. slog representations via network flow.

e For given slog representation, can compute close-to bend-optimal slog
drawings on a quadratic-size grid.

11

—




Slanted Orthogonal (slog) Drawings

[Bekos, Kaufmann, Krug, Ludwig, N3her, Roselli JGAA'14]

e Can compute bend-opt. slog representations via network flow.

e For given slog representation, can compute close-to bend-optimal slog
drawings on a quadratic-size grid.

e |LP that computes a bend-optimal slog drawing for a given
representation (but unknown whether the ILP is always feasible).

1

—




Slanted Orthogonal (slog) Drawings

[Bekos, Kaufmann, Krug, Ludwig, N3her, Roselli JGAA'14]

e Can compute bend-opt. slog representations via network flow.

e For given slog representation, can compute close-to bend-optimal slog
drawings on a quadratic-size grid.

e |LP that computes a bend-optimal slog drawing for a given
representation (but unknown whether the ILP is always feasible).

e Bend-optimal drawings may require exponential area.

11

—




Smooth Orthogonal Drawings
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Smooth Orthogonal Drawings

Def. i orthogonal complexity 2
” (OC,-layout)

Oo—0 Oo—0

smooth complexity 1
(SCy-layout)

o—0

Thm. Some 4-planar graphs admit OCs-layouts but not SCy.
Thm. Any 4-planar graph admits an SCs-layout.

Thm. Any biconn. 4-outerplane graph admits an SC;-layout.
Thm. Some graphs require exponential area if drawn with SCj.

e Do all 4-planar graphs admit an SC,-layout in polynomial area?
e Do all 4-outerplanar graphs admit an SC;-layout?
e Do all 3-planar graphs admit an SC;-layout?

e NP-hard to decide whether a 4-planar graph admits an SC;-layout?
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Edge casing — Edges & Switches, Tunnels & Bridges

Def. \

.
=, \\’H'//\“

stacking VS. weaving
MinTotalSwitches open
Max TotalSwitches open
MinMaxSwitches open open
MinMaxTunnels
MinMaxTunnelLength NP-hard

MaxMinTunnelDistance




Eliminating crossings

e confluent drawings

e partial edge drawings
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Confluent Drawings

Def. G is confluent if G admits a planar drawing s.t../_\){'

— vertices correspond to points,
— edges correspond 1 : 1 to locally-monotone curves

Obs. Any complete graph is confluent.

Def. Cographs can be obtained from a single node
by performing a finite number of unions and
complementations.

O *3
Thm. Any cograph, any complement of a , I |
tree or cycle, and any interval graph I !
is confluent —

but the 4D
hypercube isn't.

More: layered-con., A-con., ...



Partial Edge Drawings: A User Study

Evaluating Partially Drawn Links for Directed Graph Edges
[Burch et al., GD'11]
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Questionnaire

Is it possible to get from the green to the red node via exactly one intermediate node?




Results — Error Rates

Is it possible to go from the
green node to the red node
via exactly one other node?

(42 participants, 2 repetitions, avg. age 24.0 yrs.)
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Results — Error Rates

Is it possible to go from the Which node has the highest
green node to the red node number of outgoing edges?
via exactly one other node?

—a— Tapered, 20V

(42 participants, 2 repetitions, avg. age 24.0 yrs.) - Tapered, 40V

Y% Y0 — 4 Tapered, 60V
N ¥ —e—Trad., 20V

” : Y —e—Trad., 40V

? ol \ —o—Trad., 60V

25 30 : NN\ L Average

. ; \ A

15
10 -

10 4

5

o 0
1.0 0.9 075 05 0.25 0.125 10 09 0.75 05 0.25 0.125

link length link length



A Classification and Some Theory

PED = Partial Edge Drawing



A Classification and Some Theory

PED = Partial Edge Drawing

Stub = remaining edge part.

NS,
Ly

RERE S

Stubs may not intersect.

@



A Classification and Some Theory

PED = Partial Edge Drawing
can be (non-) symmetric and (non-) homogeneous

Stub = remaining edge part.  Stubs may not intersect.

Mad at edge crossings? Break the edges!



A Classification and Some Theory

PED = Partial Edge Drawing
can be (non-) symmetric and (non-) homogeneous

Stub = remaining edge part.  Stubs may not intersect.

1/4-SHPED SnHPED nSHPED nSnHPED

Mad at edge crossings? Break the edges!



A Classification and Some Theory

PED = Partial Edge Drawing
can be (non-) symmetric and (non-) homogeneous

Stub = remaining edge part.  Stubs may not intersect.

1/4-SHPED SnHPED nSHPED nSnHPED

Mad at edge crossings? Break the edges!



Combining Spring Embedder and SHPED

Randomly generated graph with 20 vertices and 100 edges.

Force-directed layout
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Combining Spring Embedder and SHPED

Randomly generated graph with 20 vertices and 100 edges.

Force-directed layout Postprocessed to 1/4-SHPED

413 crossings 23 crossings



Thm. Let G be a subgraph of K.

Then G has an 0-SHPED for any 9 < \/41n7.

Construction for § = 1/4.
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Thm. Let G be a subgraph of K.

Then G has an 0-SHPED for any 9 < \/ﬁ.

Construction for § = 1/4.

) |II .I /
[/ /

. |/
.

Drawn with a PED editor. Output of thea

lgorithm.



How far can you go?

0 = 1 allows to draw K4, but not K.



How far can you go?

0 = 1 allows to draw K4, but not K.

60 = 1/4 allows to draw Ki7, but not ...7



How far can you go?

0 = 1 allows to draw K4, but not K.

60 = 1/4 allows to draw Ki7, but not ...7 K423



How far can you go?

0 = 1 allows to draw K4, but not K.

60 = 1/4 allows to draw Ki7, but not ...7 K423

In other words:
In every set of n pts, there are £2(log n) pts in convex position.



How far can you go?

0 = 1 allows to draw K4, but not K.

60 = 1/4 allows to draw Ki7, but not ...7 K423

In other words:
In every set of n pts, there are £2(log n) pts in convex position.



Pi

Pr



Pi




Pi







Pi

—_

—@—

o

— @—

# points < 12




Pi

o

—_

—@—

o

— @—

# points < 12




Pi

=

I,

—_

—@—

o

— @—

# points < 12




Pi

/ INTHR
/ \|v A |v‘/‘w %

# points < 5

—_

—@—

o

*

# points < 12

Pr



Pi

/ N
/ \|v A |v‘/‘w %

—_

# points < 5

—@—

o

*

# points < 12

# points <5

Pr






slope number
segment / arc number
line / plane cover number

point-set embeddability
track number

RAC / LAC drawings

(smooth / slanted) orthogonal drawings
edge casings

partial edge drawings
confluent drawings




slope number
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point-set embeddability
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Questions
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Drawing Graphs on
Few Lines and Few Planes
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Kuratowski's Theorem

Thm. [Kuratowski 1930: Sur le probleme des courbes gauches en topo/ogie]
Let G be a simple graph. Then:
G planar < neither K5 nor K33 is minor of G.

Kazimierz Kuratowski
Warsaw 1896—-1980 Warsaw




Kuratowski's Theorem

Thm. [Kuratowski 1930: Sur le probleme des courbes gauches en topo/ogie]
Let G be a simple graph. Then:
G planar < neither K5 nor K33 is minor of G.

Kazimierz Kuratowski
Warsaw 1896—-1980 Warsaw

Thm. [Robertson & Seymour 1983-94: Graph minors I-X1V]
Every minor closed graph class has a finite obstruction
set.



Planar Graphs: Testing and Drawing

Thm. [Hopcroft & Tarjan, J. ACM 1974]

et G be a simple graph with n nodes.
t takes O(n) time to test whether G is planar.

John Edward Hopcroft
*1939, Seattle, WA, U.S.A.

Robert Endre Tarjan
*1948 Pomona, CA, USA
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Planar Graphs: Testing and Drawing

Thm. [Hopcroft & Tarjan, J. ACM 1974]
et G be a simple graph with n nodes.
t takes O(n) time to test whether G is planar.

Thm. [Wagner 1936, Fary 1948, Stein 1951]
Every planar graph can be drawn straightline.

Klaus Wagner
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Istvan Fary
Gyula, Hungary 1922
—1984 EI Cerrito, CA

Paul Koebe
Luckenwalde 1882—-1945 Leipzig

Thm. [Koebe 1936: Kontaktprobleme der konformen Abbi/dung]

Every planar graph can be
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Drawing Planar Graphs

Thm. [Tutte 1963: How to draw a graph]
A (3-connected) planar graph can be drawn
straightline (and convex); in linear time.
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Thm. [Tutte 1963: How to draw a graph]
A (3-connected) planar graph can be drawn
straightline (and convex); in linear time.

Thm. [Schnyder, SODA 1990: Embedding planar graphs on the grid]
A planar graph with n > 3 vertices can be drawn

straightline s.t. the vertices lie on a grid of size
(n—2) x(n—2).
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Thm. [De Fraysseix, Pach, Pollack: Combinatorica 1990]
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Our Problem Today

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P3(Ks) = 4]

For any planar graph G,
clearly p3(G) = 1.

We can consider p3 as a
parameter for classifying
non-planar graphs.
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Formal Definition

Let G be a graphand 1 < m < d.
Affine cover number p7(G):

minimum number of m-dimensional hyperplanes in R s.t.
G has a crossing-free straight-line drawing that is contained
in these planes

Weak affine cover number 77(G):
require only vertices to be contained in the planes.

Observations

pl =w =1for m>3 py = p3" and 7' = 73" for d > 3
2 1 1 2 1 1
Td < Pq P3 < P3 = P3 T3 S M3 S T
Interesting cases
e Line cover numbers in 2D and 3D: p3, p3, 73, T3

e Plane cover numbers in 3D: P2, T3
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Relations to Other Parameters

* x(G)/2 < m3(G) < x(G)
o x(G)/4 < m3(G) < x(G)

° 7T:3L(G) = lva(G)
linear vertex arboricity: smallest partition of V
such that each set induces a linear forest

3 for planar G
m3(G) < < 2 for outerplanar G
A/2 + 1 for connected G

e 72(G) = vi(G)
vertex thickness: smallest partition of V
such that each set induces a planar graph
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Relations to Other Parameters

For planar, connected graphs G:
minimum number of different slopes needed to draw G

[slope(G) < p3(G) < segm(G) = O(P%(G)z):

f

minimum number of line segments needed to draw G

p3(G) <6
slope(G) < 3
segm(G) < 10
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Complete Graphs K,

e m1(K,) = [n/2]. Idea: Draw K, in general position.
Place lines s.t. each covers two vertices.

e 15(K,) = [n/4]. Idea: Place copies of K, on parallel planes
and wiggle to avoid crossings.

p3(Kn) = (). Idea: No line can cover more than 1 edge.
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Complete Graphs K,

e m3(K,) = [n/2]. Idea: Draw K, in general position.
Place lines s.t. each covers two vertices.

e 15(K,) = [n/4]. Idea: Place copies of K, on parallel planes
and wiggle to avoid crossings.

e p3(K,) = (5).  Idea: No line can cover more than 1 edge.

o Wt < c(Kn Ka) < P3(Kn) S c(Kn Ks) @ %5 + O(n)
use one plane for each K3

Results on Steiner triple systems imply that the edge set of K,

can be covered exactly by copies of K3
iff n=1 (mod 6) or n =3 (mod 6)
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Lower Bound for p3(G)

Essential vertex: degree > 3 or belongs to a K3

AY 4
AY ’ .
A4
4 AY
4 \
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4 \

e Essential vertices on intersections of at least two lines

e es(G): number of essential vertices in G

e es(G)< () = pA(G) = \/2es(G)

Additionally we can show: p3(G) > tw(G)/3
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w5 for Outerplanar Graphs

Outerplanar graphs are track drawable.

(Similar to result by Bannister et al.

For any outerplanar graph G:  m3(G) < 2

On the other hand: There are infinitely many triangulations G with
A(G) <12 and 73(G) > n%01
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e Variants with parallel lines: 75 and 73

e Topological variant—don't insist on straight lines:
7-32(G) — th|CkneSS( G) = min. # planar graphs into which E(G) can be partitioned.

e Separation between p3 and p3:
there are planar graphs G %
with p3(G) = 2(n) A

and p%(G) — O(n2/3) U3 R NG
n
TR
v
Lﬁ) SN § ’;/'
UL NI UL NG

LN LN UL N\
AN NI NN




A Great Tool for Making Presentations



A Great Tool for Making Presentations

1 (0 ipe.otfried.org @ | (O ipe drawing editor ) wB ¥+ & &

The Ipe extensible drawing editor

Ipe is a drawing editor for creating figures in PDF or (encapsulated) Postscript format. It supports making small figures for inclusion into LaTeX-documents as well as making multi-page PDF
presentations that can be shown on-line with Acrobat Reader.

Ipe's main features are:

« Entry of text as LaTeX source code. This makes it easy to enter mathematical expressions, and to reuse the LaTeX-macros of the main document. In the display text is displayed as it will appear
in the figure.

+ Produces pure Postscript/PDF, including the text. Ipe converts the LaTeX-source to PDF or Postscript when the file is saved.

« |t is easy to align objects with respect to each other (for instance, to place a point on the intersection of two lines, or to draw a circle through three given points) using various snapping modes.

« Users can provide ipelets (Ipe plug-ins) to add functionality to Ipe. This way, Ipe can be extended for each task at hand.

» The text model is based on Unicode, and has been tested with Koreln, Chinese, and Japanese.

+ |pe can be compiled for Unix and Windows.

« |pe is written in standard C++ and Lua 5.3..

You can like lpe on  Facebook

You can find more information about Ipe features inthe = manual
& Wiki

€2 Mailing lists

€» Reporting bugs

€» Copyright

¢y Other downloads
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Near-planar graphs

Task: add one edge uv to a planar graph G and create a
p3-optimal drawing.

e Split the planar graph
onto three planes
e Add uv on a fourth plane

= p5(G +uv) <4

Is this bound worst-case optimal?
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