Variants of Oriented Coloring

Dhyanagamyananda (Swathyprabhu mj)

Pre-Conference School, CALDAM - 2017
BITS - K K Birla Goa Campus, Goa

Ramakrishna Mission Vivekananda University Belur campus (1 out of 5 units pan India) Howrah, West Bengal

Ramakrishna Mission Vivekananda University Belur campus (1 out of 5 units pan India) Howrah, West Bengal

Department of Computer Science

Exordium

"It is possible to go to a graph theory conference and to ask oneself, at the end of every talk, What is the oriented analogue? What is the right definition? Does the oriented version of the theorem still hold? If so, is there an easier proof and can a stronger conclusion be obtained? If the theorem fails, can one get a proof in the oriented world assuming a stronger hypothesis? We can personally attest that this can be an entertaining pastime. If at the end of this talk you too catch the oriented bug and begin to ask these questions" then I deem this presentation fruitful.

Outline of the Talk

Topics
1.Oriented Vertex Coloring
2.Oriented Clique
3.Oriented Edge Coloring
4.Total Oriented Coloring
5.Oriented Fractional Coloring 19
6.Oriented Chromatic Polynomial

0.Graph Coloring problem
0.Graph Coloring problem 3 1

Transitions Time(mins)
18 8
7 1
12 7
23 10
8

0 . Introduction

- Simple Graph

- Directed Graph

- Oriented Graph

Edges in a simple graph are replaced by arcs
Meta Question: How do the properties of simple graph "get lifted" to oriented graphs?

For Instance,

- Graph Coloring

$\Phi(\mathrm{u})!=\Phi(\mathrm{v})$ whenever u and v are adjacent
Optimization parameter: Chromatic Number $\chi(G)$

For Instance,

- Graph Coloring

$\Phi(\mathrm{u})!=\Phi(\mathrm{v})$ whenever u and v are adjacent
Φ is an adjacency preserving mapping, also called a homomorphism from G to H_{k}

1: Oriented Coloring

- An oriented coloring of oriented graph G is a homomorphic mapping

$$
\phi: G \rightarrow H_{k}
$$

i) $\phi(u) \neq \phi(v)$ when u and v are adjacent
ii) for two arcs $u \rightarrow v, x \rightarrow y$ of G ,

$$
\phi(u)=\phi(y) \Longrightarrow \phi(v) \neq \phi(x)
$$

1: Oriented Coloring

- An oriented coloring of oriented graph G is a homomorphic mapping $\phi: G \rightarrow H_{k}$
i) $\phi(u) \neq \phi(v)$ when $\mathbf{X} n d$ vare adjacent
ii) for two arc

$$
\phi(u)=\phi(y) \Longrightarrow \phi(v) \neq \phi(x)
$$

1: Oriented Coloring

- An oriented coloring of oriented graph G is a homomorphic mapping $\phi: G \rightarrow H_{k}$
i) $\phi(u) \neq \phi(v)$ when $\downarrow \checkmark$ and v are adjacent
ii) for two arcs

of G,
- Immediate consequence: 2-dipath needs three colors

(Clique vs) 2: Oclique

- Oriented Graph Coloring

(Clique vs) 2: Oclique

- Oriented Graph Coloring

W. F. Klostermeyer, G. MacGillivray: 2004

(Clique vs) 2: Oclique

- Oriented Graph Coloring

W. F. Klostermeyer, G. MacGillivray: 2004

(Clique vs) 2: Oclique

- Oriented Graph Coloring

W. F. Klostermeyer, G. MacGillivray: 2004

(Clique vs) 2: Oclique

- Oriented Graph Coloring

Oriented Absolute Clique or Oclique of order 4

(Clique vs) 2: Oclique

- Oriented Graph Coloring

Oriented Absolute Clique or Oclique of order 4

- Ocliques are oriented graphs having $\chi_{o}(G)=|V(G)|$ Note: Non adjacent nodes in an Oclique are in 2dipath

\vec{O}_{4}

\vec{O}_{5}

\vec{O}_{7}
Sample o-cliques

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

- Fact $1-\mathcal{O}(G)$ has a degree 2-vertex, say v

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

- Fact $1-\mathcal{O}(G)$ has a degree 2 vertex, say v
- Fact 2 -

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

- Fact $1-\mathcal{O}(G)$ has a degree 2 vertex, say v
- Fact 2 -

- Task - Find a target graph that mimics x, y pair.

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

- Fact $1-\mathcal{O}(G)$ has a degree 2 vertex, say v
- Fact 2 -

- Task - Find a target graph that mimics x, y pair.
- Fact 3 - Paley tournament $Q R_{7}$ is the target

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

$Q R_{n}$: Tournament based on Quadratic Residues
$n \in$ Prime ${ }^{k}$
$n=3 \bmod 4$
$S_{n}=$ Non-zero squares of $[n]$
$S_{7}=\{1,2,4\}$
$b-a \in S_{n} \Longrightarrow \overrightarrow{a b} \in Q R_{n}$
Properties of the tournament

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

$Q R_{n}$: Tournament based on Quadratic Residues

$$
\begin{aligned}
n & \in \text { Prime }^{k} \\
n & =3 \bmod 4 \\
S_{n} & =\text { Non-zero squares of }[n] \\
S_{7} & =\{1,2,4\} \\
b & -a \in S_{n} \Longrightarrow \overrightarrow{a b} \in Q R_{n}
\end{aligned}
$$

Properties of the tournament

Paley tournament on 7 vertices

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

$Q R_{n}$: Tournament based on Quadratic Residues

$$
\begin{aligned}
n & \in \text { Prime }^{k} \\
n & =3 \bmod 4 \\
S_{n} & =\text { Non-zero squares of }[n] \\
S_{7} & =\{1,2,4\} \\
b & -a \in S_{n} \Longrightarrow \overrightarrow{a b} \in Q R_{n}
\end{aligned}
$$

Properties of the tournament

Paley tournament on 7 vertices

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

$Q R_{n}$: Tournament based on Quadratic Residues

$$
\begin{aligned}
n & \in \text { Prime }^{k} \\
n & =3 \bmod 4 \\
S_{n} & =\text { Non-zero squares of }[n] \\
S_{7} & =\{1,2,4\} \\
b & -a \in S_{n} \Longrightarrow \overrightarrow{a b} \in Q R_{n}
\end{aligned}
$$

Properties of the tournament

Paley tournament on 7 vertices

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

$Q R_{n}$: Tournament based on Quadratic Residues

$$
\begin{aligned}
n & \in \text { Prime }^{k} \\
n & =3 \bmod 4 \\
S_{n} & =\text { Non-zero squares of }[n] \\
S_{7} & =\{1,2,4\} \\
b & -a \in S_{n} \Longrightarrow \overrightarrow{a b} \in Q R_{n}
\end{aligned}
$$

Properties of the tournament

Paley tournament on 7 vertices

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

$Q R_{n}$: Tournament based on Quadratic Residues

$$
\begin{aligned}
n & \in \text { Prime }^{k} \\
n & =3 \bmod 4 \\
S_{n} & =\text { Non-zero squares of }[n] \\
S_{7} & =\{1,2,4\} \\
b & -a \in S_{n} \Longrightarrow \overrightarrow{a b} \in Q R_{n}
\end{aligned}
$$

Properties of the tournament

Paley tournament on 7 vertices

Eg: Oriented Coloring-
 Outerplanar graphs - Proof design

$Q R_{n}$: Tournament based on Quadratic Residues

$$
\begin{aligned}
n & \in \text { Prime }^{k} \\
n & =3 \bmod 4 \\
S_{n} & =\text { Non-zero squares of }[n] \\
S_{7} & =\{1,2,4\} \\
b & -a \in S_{n} \Longrightarrow \overrightarrow{a b} \in Q R_{n}
\end{aligned}
$$

Properties of the tournament

Paley tournament on 7 vertices

1: Oriented ColoringBasic Results

- vs chromatic number of graph G

$$
\chi(G) \leq \chi_{o}(G)
$$

1: Oriented ColoringBasic Results

- vs chromatic number of graph G

$$
\chi(G) \leq \chi_{o}(G)
$$

- vs Acyclic chromatic number of graph G

$$
\chi_{a}(G)=k, \quad \chi_{o}(\vec{G}) \leq k \cdot 2^{k-1}
$$

1: Oriented ColoringBasic Results

- vs chromatic number of graph G

$$
\chi(G) \leq \chi_{o}(G)
$$

- vs Acyclic chromatic number of graph G

$$
\chi_{a}(G)=k, \quad \chi_{o}(\vec{G}) \leq k \cdot 2^{k-1}
$$

- Therefore for the class of planar graphs

$$
\chi_{a}(G)=5, \quad \chi_{o}(G) \leq 80
$$

1: Oriented ColoringBasic Results

- vs chromatic number of graph G

$$
\chi(G) \leq \chi_{o}(G)
$$

- vs Acyclic chromatic number of graph G

$$
\chi_{a}(G)=k, \quad \chi_{o}(\vec{G}) \leq k \cdot 2^{k-1}
$$

- Therefore for the class of planar graphs

$$
\chi_{a}(G)=5, \quad \chi_{o}(G) \leq 80
$$

Best known bound till date

3: Oriented Arc Coloring

- An oriented arc coloring of graph G is a mapping Φ from $A(G)$ to $A\left(H_{k}\right)$ such that,

$$
\text { i) } \phi\left(e_{1}\right) \neq \phi\left(e_{2}\right)
$$

whenever e_{1}, e_{2} are in 2-dipath
ii) for 4 arcs e1 preceding e2, a1 preceding a2,

$$
\phi\left(e_{1}\right)=\phi\left(a_{2}\right) \Longrightarrow \phi\left(e_{2}\right) \neq \phi\left(a_{1}\right)
$$

3: Oriented Arc Coloring

- An oriented arc coloring of graph G is a mapping Φ from $A(G)$ to $A\left(H_{k}\right)$ such that,

Pascal Ochem, Alexandre Pinlou, Éric Sopena: 2007

3: Oriented Arc Coloring

- An oriented arc coloring of graph G is a mapping Φ from $A(G)$ to $A\left(H_{k}\right)$ such that,

- Immediate consequence: P_{4} needs three colors

Pascal Ochem, Alexandre Pinlou, Éric Sopena: 2007

3: Oriented Arc ColoringA Restatement

- Observation:

Oriented arc
Coloring of

Pascal Ochem, Alexandre Pinlou, Éric Sopena: 2007

3: Oriented Arc ColoringA Restatement

- Observation:

Oriented arc
Coloring of

Pascal Ochem, Alexandre Pinlou, Éric Sopena: 2007

3: Oriented Arc ColoringA Restatement

- Example

Pascal Ochem, Alexandre Pinlou,

3: Oriented Arc ColoringA Restatement

- Example

Pascal Ochem, Alexandre Pinlou, Éric Sopena: 2007

3: Oriented Arc ColoringA Restatement

- Example
$\mathrm{G} \quad \mathrm{A}(\mathrm{G}) \quad \mathrm{LD}(\mathrm{G})$

Pascal Ochem, Alexandre Pinlou, Éric Sopena: 2007

3: Oriented Arc ColoringA Restatement

- Example
$\mathrm{G} \quad \mathrm{A}(\mathrm{G}) \quad \mathrm{LD}(\mathrm{G})$

Pascal Ochem, Alexandre Pinlou, Éric Sopena: 2007

3: Oriented Arc ColoringA Restatement

- Example

G $\quad \mathrm{A}(\mathrm{G}) \quad \mathrm{LD}(\mathrm{G})$

Pascal Ochem, Alexandre Pinlou, Éric Sopena: 2007

3: Oriented Arc ColoringBasic Results

- vs Oriented chromatic number for graph G

$$
\chi_{o}^{\prime}(G) \leq \chi_{o}(G)
$$

- Also, for a graph G such that

$$
\chi_{o}^{\prime}(G)=k, \quad \chi_{o}(G) \leq f(k)
$$

- vs Acyclic chromatic number k

$$
2 k(k-1)+\left\lfloor\frac{k}{2}\right\rfloor
$$

Sample Problem Instances

- Various graph classes

Outerplanar graphs
Bipartite graph
Series-Parallel graphs
Cubic graphs
Triangle free graphs
Partial 2-trees
Grids
Sparse plane graphs
Halin graphs
Dense graphs

- Graph parameters

Bounded degree
Large girth
Maximum avg degree

- Hardness Result
- Parameterized complexity

4: Total Oriented Coloring

- Searching for a definition
- Input oriented graph G(V,A).
- Color vertices + arcs

1) coloring restricted to vertices is OVC
2) coloring restricted to arcs is OAC
3)

4: Total Oriented Coloring

- Searching for a definition
- Input oriented graph G(V,A).
- Color vertices + arcs

1) coloring restricted to vertices is OVC
2) coloring restricted to arcs is OAC
3)

$\mathbf{V} \rightarrow \mathbf{A}$
$\mathrm{A} \rightarrow \mathbf{V}$
$\mathbf{V} \rightarrow \mathbf{V}$

$\mathbf{A} \rightarrow \mathbf{A}$
4 different proximity relations

4: Total Oriented Coloring

- Searching for a definition

3)

4 different proximity relations

4: Total Oriented Coloring

- Searching for a definition

3)

4 different proximity relations

4: Total Oriented Coloring

- Searching for a definition

3)

Ramakrishna Mission Vivekananda University

4: Total Oriented Coloring

- Searching for a definition

3)

G

$$
\mathbf{V} \rightarrow \mathbf{A}
$$

$\mathbf{V} \rightarrow \mathbf{V}$

4: Total Oriented Coloring

- Complete Definition

Graph G is k-total oriented colorable if there exists a homomorphism

$$
f: S(G)^{2} \rightarrow H_{k}
$$

an oclique on k vertices.

4: Total Oriented Coloring

- Complete Definition

Graph G is k-total oriented colorable if there exists a homomorphism $f: S(G)^{2} \rightarrow H_{k}$ an oclique on k vertices.

- Immediate consequence: P_{3} needs five colors

C_{4} needs eight colors

4: Total Oriented ColoringBasic Results

- vs Oriented chromatic number for graph G

$$
\chi_{o}^{\prime \prime}(G) \leq 2 \cdot \chi_{o}(G)
$$

4: Total Oriented ColoringBasic Results

- vs Oriented chromatic number for graph G

$$
\chi_{o}^{\prime \prime}(G) \leq 2 \cdot \chi_{o}(G)
$$

- vs Oriented chromatic index for graph G

$$
\chi_{o}^{\prime}(G)=k, \quad \chi_{o}^{\prime \prime}(G) \leq k+f(k)
$$

4: Total Oriented ColoringBasic Results

- vs Oriented chromatic number for graph G

$$
\chi_{o}^{\prime \prime}(G) \leq 2 \cdot \chi_{o}(G)
$$

- vs Oriented chromatic index for graph G

$$
\chi_{o}^{\prime}(G)=k, \quad \chi_{o}^{\prime \prime}(G) \leq k+f(k)
$$

- vs Acyclic chromatic number k for graph G

$$
\chi_{o}^{\prime \prime}(G) \leq k \cdot 2^{k-1}+2 k(k-1)+\left\lfloor\frac{k}{2}\right\rfloor
$$

4: Total Oriented ColoringBasic Results

- vs Oriented chromatic number for graph G

$$
\chi_{o}^{\prime \prime}(G) \leq 2 \cdot \chi_{o}(G)
$$

- vs Oriented chromatic index for graph G

$$
\chi_{o}^{\prime}(G)=k, \quad \chi_{o}^{\prime \prime}(G) \leq k+f(k)
$$

- vs Acyclic chromatic number k for graph G

$$
\chi_{o}^{\prime \prime}(G) \leq k \cdot 2^{k-1}+2 k(k-1)+\left\lfloor\frac{k}{2}\right\rfloor
$$

- Tightness yet to be investigated!!!

4: Total Oriented ColoringImmediate Conclusions

- vs Oriented chromatic number for graph G

$$
\chi_{o}^{\prime \prime}(G) \leq 2 \cdot \chi_{o}(G) \Longrightarrow \chi_{o}^{\prime \prime}(\mathcal{P}(G)) \leq 160
$$

4: Total Oriented ColoringImmediate Conclusions

- vs Oriented chromatic number for graph G

$$
\chi_{o}^{\prime \prime}(G) \leq 2 \cdot \chi_{o}(G) \Longrightarrow \chi_{o}^{\prime \prime}(\mathcal{P}(G)) \leq 160
$$

- vs Acyclic chromatic number k for graph G

$$
\begin{aligned}
& \chi_{o}^{\prime \prime}(G) \leq k \cdot 2^{k-1}+2 k(k-1)+\left\lfloor\frac{k}{2}\right\rfloor \\
\Longrightarrow & \chi_{o}^{\prime \prime}(\mathcal{P}(G)) \leq 122
\end{aligned}
$$

4: Total Oriented ColoringOuterplanar graphs - Schema

- Fact 1 - Homomorphism $f: \mathcal{O}(G)_{i} \rightarrow Q R_{7}$

4: Total Oriented ColoringOuterplanar graphs - Schema

- Fact 1 - Homomorphism $f: \mathcal{O}(G)_{i} \rightarrow Q R_{7}$ $Q R_{n}$: Tournament based on Quadratic Residues

4: Total Oriented ColoringOuterplanar graphs - Schema

- Fact 1 - Homomorphism $f: \mathcal{O}(G)_{i} \rightarrow Q R_{7}$
- Fact $2-\chi_{o}^{\prime \prime}\left(A T_{7}\right) \leq \chi_{o}^{\prime \prime}\left(Q R_{7}\right)$ greedy coloring

4: Total Oriented ColoringOuterplanar graphs - Schema

- Fact 1 - Homomorphism $f: \mathcal{O}(G)_{i} \rightarrow Q R_{7}$
- Fact $2-\chi_{o}^{\prime \prime}\left(A T_{7}\right) \leq \chi_{o}^{\prime \prime}\left(Q R_{7}\right)$
- Fact $3-\chi_{o}^{\prime \prime}\left(A T_{7}\right)=13$

4: Total Oriented ColoringOuterplanar graphs - Schema

- Fact 1 - Homomorphism $f: \mathcal{O}(G)_{i} \rightarrow Q R_{7}$
- Fact $2-\chi_{o}^{\prime \prime}\left(A T_{7}\right) \leq \chi_{o}^{\prime \prime}\left(Q R_{7}\right)$
- Fact $3-\chi_{o}^{\prime \prime}\left(A T_{7}\right)=13$
- Fact 4 - Convert and update $A T_{7} \rightsquigarrow Q R_{7}$

4: Total Oriented ColoringOuterplanar graphs - Schema

- Fact 1 - Homomorphism $f: \mathcal{O}(G)_{i} \rightarrow Q R_{7}$
- Fact 2 - $\chi_{o}^{\prime \prime}\left(A T_{7}\right) \leq \chi_{o}^{\prime \prime}\left(Q R_{7}\right)$
- Fact 3 - $\chi_{o}^{\prime \prime}\left(A T_{7}\right)=13$
- Fact $4-A T_{7} \rightsquigarrow Q R_{7}$
- Fact $5-\chi_{o}^{\prime \prime}(G)=12$

4: Total Oriented ColoringOuterplanar graphs - Schema

- Fact 1 - Homomorphism $f: \mathcal{O}(G)_{i} \rightarrow Q R_{7}$
- Fact $2-\chi_{o}^{\prime \prime}\left(A T_{7}\right) \leq \chi_{o}^{\prime \prime}\left(Q R_{7}\right)$
- Fact $3-\chi_{o}^{\prime \prime}\left(A T_{7}\right)=13$
- Fact $4-A T_{7} \rightsquigarrow Q R_{7}$
- Fact $5-\chi_{o}^{\prime \prime}(G)=12$
- Result - $12 \leq \chi_{o}^{\prime \prime}(\mathcal{O}(G)) \leq 13$
A.Nandy, S.Sen, S.Das, S.Nandi, SP: 2017

4: Total Oriented ColoringOuterplanar graphs - Schema

- Fact 1 - Homomorphism $f: \mathcal{O}(G)_{i} \rightarrow Q R_{7}$
- Fact $2-\chi_{o}^{\prime \prime}\left(A T_{7}\right) \leq \chi_{o}^{\prime \prime}\left(Q R_{7}\right)$
- Fact $3-\chi_{o}^{\prime \prime}\left(A T_{7}\right)=13$
- Fact $4-A T_{7} \rightsquigarrow Q R_{7}$
- Fact $5-\chi_{o}^{\prime \prime}(G)=12$
- Result - $12 \leq \chi_{o}^{\prime \prime}(\mathcal{O}(G)) \leq 13$
\square

Fractional Graph Theory

"Perfectness" (perfect matching)

- Maximal (maximal matching)
- Fractional (fractional matching)

Example with coloring

Schedule 5 committees in shortest possible duration given each runs for 1 hr .

3 Hour schedule for 5 committees

2.5 Hour schedule for 5 committees

Illustration from the book "Fractional graph theory" by Scheinerman and Ullman

Fractional Coloring

- A simple odd cycle is 3-colorable where each node receives one color.

Fractional Coloring

- Now, we assign a color-tuple of fixed length to each node with the condition that color-tuples of adjacent nodes are non-intersecting.

Fractional Coloring

- Now, we assign a color-tuple of fixed length to each node with the condition that color-tuples of adjacent nodes are non-intersecting.
- Optimization Problem:
- How many colors (a) are needed?
- What is the length of the tuple (b)?
"such that a / b is minimized" ?

Fractional Coloring

Defining Fractional Chromatic Number:

- A b-fold coloring of a graph G assigns to each vertex of G a set of \mathbf{b} colors so that adjacent vertices receive disjoint sets of colors.

Fractional Coloring

Defining Fractional Chromatic Number:

- A b-fold coloring of a graph G assigns to each vertex of G a set of \mathbf{b} colors so that adjacent vertices receive disjoint sets of colors.
- G is $\mathbf{a}: \mathbf{b}$-colorable if it has a b-fold coloring in which the colors are drawn from a palette of a colors.

Fractional Coloring

Defining Fractional Chromatic Number:

- A b-fold coloring of a graph G assigns to each vertex of G a set of \mathbf{b} colors so that adjacent vertices receive disjoint sets of colors.
- G is a:b-colorable if it has a b-fold coloring in which the colors are drawn from a palette of a colors.
- Fractional chromatic number

$$
\chi_{f}(G)=\lim _{b \rightarrow \infty} \frac{\chi_{b}(G)}{b}=\inf _{b} \frac{\chi_{b}(G)}{b}
$$

Fractional coloring of C_{7}

Oriented fractional coloring of $\overrightarrow{\mathrm{C}}_{7}$ - A revisit

Oriented Fractional coloring of Directed Cycles

Main Result 1: Given a directed cycle \vec{C}_{n} of length n, the oriented fractional chromatic number,

$$
\chi_{o f}\left(\vec{C}_{n}\right)= \begin{cases}4 & \begin{array}{l}
\text { if } \mathrm{n} \text { is not a multiple } \\
\text { of }(4 \mathrm{k}-1) \text { kind of prime }
\end{array} \\
4-1 / \mathrm{k} & \begin{array}{l}
\text { if } \mathrm{n} \text { is a multiple of } \\
\text { smallest }(4 \mathrm{k}-1) \text { kind of prime }
\end{array}\end{cases}
$$

eg., $\vec{C}_{7=4 * 2-1}=3.5, \vec{C}_{77=7 * 11}$ also 3.5 as we can repeat the $\overrightarrow{\mathrm{C}}_{7}$ coloring 11 times, instead $\overrightarrow{\mathrm{C}}_{11}$ coloring 7 times

Set Theoretic Proof sketch (centered around minimal ofc cycle)

Distinct color tuples A, B, C assigned to u,v,w in uvw. Let D be such that $|\mathrm{D}|<|\mathrm{A}|=|\mathrm{B}|=|\mathrm{C}|$

Set Theoretic Proof sketch (centered around minimal ofc cycle)

Distinct color tuples A, B, C assigned to u,v,w in uvw. Let D be such that $|\mathrm{D}|<|\mathrm{A}|=|\mathrm{B}|=|\mathrm{C}|$

$$
\begin{aligned}
& A=\{1, \cdots, k\} \\
& B=\{k+1, \cdots, 2 k\} \\
& C=\{2 k+1, \cdots, 3 k\} \\
& D=\{3 k+1, \cdots, 4 k-\delta\}
\end{aligned}
$$

Proof sketch (centered around minimal ofc cycle)

Distinct color tuples A, B, C assigned to u,v,w in uvw. Let D be such that $|\mathrm{D}|<|\mathrm{A}|=|\mathrm{B}|=|\mathrm{C}|$

1. Around the cycle: A-B-C-A doesn't occur

Proof sketch -
 (centered around minimal ofc cycle)

Distinct color tuples A, B, C assigned to u,v,w in uvw. Let D be such that $|\mathrm{D}|<|\mathrm{A}|=|\mathrm{B}|=|\mathrm{C}|$

1. Around the cycle: A-B-C-A doesn't occur
2. Define Triple $\triangle A-B-C, A D-B D-C D$, and Quad \square AD-AB-BC-CD

S.Das, S. Sen, SP: 2017

Proof sketch (centered around minimal ofc cycle)

Distinct color tuples A, B, C assigned to u,v,w in uvw. Let D be such that $|\mathrm{D}|<|\mathrm{A}|=|\mathrm{B}|=|\mathrm{C}|$

1. Around the cycle: A-B-C-A doesn't occur
2. Define Triple \triangle A-B-C, AD-BD-CD, and Quad \square AD-AB-BC-CD
3. Colored cycle is a series of triples and quads.

Proof sketch (centered around minimal ofc cycle)

Distinct color tuples A, B, C assigned to u,v,w in uvw. Let D be such that $|\mathrm{D}|<|\mathrm{A}|=|\mathrm{B}|=|\mathrm{C}|$

1. Around the cycle: A-B-C-A doesn't occur
2. Define Triple \triangle A-B-C, AD-BD-CD, and Quad \square AD-AB-BC-CD
3. Colored cycle is a series of triples and quads.
4. Arc-distance between two successive triples is same.

Proof sketch (centered around minimal ofc cycle)

Distinct color tuples A, B, C assigned to u,v,w in uvw. Let D be such that $|\mathrm{D}|<|\mathrm{A}|=|\mathrm{B}|=|\mathrm{C}|$

1. Around the cycle: A-B-C-A doesn't occur
2. Define Triple \triangle A-B-C, AD-BD-CD, and Quad \square AD-AB-BC-CD
3. Colored cycle is a series of triples and quads.
4. Arc-distance between two successive triples is same.
5. Cycles with (4k-1) prime factor length has "canonical coloring" of $\chi_{o f}\left(C_{n}\right)=4-1 / \mathrm{k}$. The remaining are all 4-colorable.

Proof sketch (centered around minimal ofc cycle)

Distinct color tuples A, B, C assigned to u,v,w in uvw. Let D be such that $|\mathrm{D}|<|\mathrm{A}|=|\mathrm{B}|=|\mathrm{C}|$

1. Around the cycle: A-B-C-A doesn't occur
2. Define Triple $\triangle A-B-C, A D-B D-C D$, and Quad \square AD-AB-BC-CD
3. Colored cycle is a series of triples and quads.
4. Arc-distance between two successive triples is same.
5. Cycles with (4k-1) prime factor length has "canonical coloring" of $\chi_{o f}\left(\mathrm{C}_{\mathrm{n}}\right)=4-1 / \mathrm{k}$. The remaining are all 4-colorable.
6. Canonical coloring gives optimal solution.

Proof sketch (centered around minimal ofc cycle)

6. Canonical coloring gives optimal solution.

Fractional coloring of oriented cycles

 Corollary result 2. Given an oriented cycle $\overrightarrow{\mathrm{C}}_{\mathrm{n}}$ of length n, such that the difference of forward and reverse arcs is m, then the oriented fractional chromatic number,

6. Oriented Chromatic Polynomial

A word of caution ...

- Not every structural property/concept can be lifted in the oriented domain.

\mathcal{A} word of caution ...

- Not every structural property/concept can be lifted in the oriented domain.
- For instance, Compliment of a graph.

\mathcal{A} word of caution ...

- Not every structural property/concept can be lifted in the oriented domain.
- For instance, Compliment of a graph.
- Quick answer: ‘Reverse the arcs’ wont help. Why?

References

[1] B. Courcelle, The monadic second order logic of graphs \{VI\}: On several representations of graphs by relational structures, Discrete Applied Mathematics 54 (2) (1994) 117-149.
[2] A. Raspaud, É. Sopena, Good and semi-strong colorings of oriented planar graphs, Information Processing Letters 51 (4) (1994) 171-174.
[3] É. Sopena, Homomorphisms and colourings of oriented graphs: An updated survey (to appear), Discrete Mathematics.
[4] A. Nandy, S. Sen, É. Sopena, Outerplanar and planar oriented cliques, Journal of Graph Theory. doi: 10.1002/jgt.21893.
[5] W. F. Klostermeyer, G. MacGillivray, Analogs of cliques for oriented coloring, Discussiones Mathematicae Graph Theory 24 (3) (2004) 373388.
[6] T. H. Marshall, On oriented graphs with certain extension properties. (in press), Ars Combinatoria.
[7] S. Sen, A contribution to the theory of graph homomorphisms and colorings, Ph.D. thesis, Bordeaux University, France (2014).
[8] S. Das, S. Mj, S. Sen, On oriented relative clique number, Electronic Notes in Discrete Mathematics 50 (2015) 95 - 101, LAGOS'15 \{VIII\} Latin-American Algorithms, Graphs and Optimization Symposium.
Ramakrisnna visssion vivekananaa Unıversity
[9] É. Sopena, The chromatic number of oriented graphs, Journal of Graph Theory 25 (1997) 191-205.
[10] T. H. Marshall, Homomorphism bounds for oriented planar graphs of given minimum girth, Graphs and Combinatorics 29 (5) (2013) 14891499.
[11] A. V. Kostochka, É. Sopena, X. Zhu, Acyclic and oriented chromatic numbers of graphs, Journal of Graph Theory 24 (4) (1997) 331-340.
[12] O. V. Borodin, On the total coloring of planar graphs, J. reine angew. Math 394 (1989) 180-185.
[13] P. Ochem, Oriented colorings of triangle-free planar graphs, Information Processing Letters 92 (2) (2004) 71-76.

Vedanta-Gesellschaft e.V

Affiliated to Ramakrishna Order in India

www.vedanta-germany.org

Vedanta Center Mohnweg, Berlin

Ramakrishna Mission Vivekananda University

Thank you

