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Introduction

I In this talk, we discuss some problems and properties of
visibility graphs of point sets in the plane.

I Visibility graphs are widely studied structures in
computational geometry, and may be defined on point sets,
line segments, polygons and other geometric sets.

I Visibility graphs have their use in robot motion planning,
security problems etc.
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Introduction

P = {p1, p2, . . . , pn} is a given set of points on the plane.



Introduction

pi pj pk

Two points pi and pj of P are mutually visible if the line segment
pipj does not contain or pass through any other point of P.



Introduction

pi pj pk

Two points pi and pk of P are mutually invisible if the line
segment pipj contains or passes through another point of P.



Introduction

pi pj pk

A point pj of P lying on the line segment pipk , is called a blocker
of pi and pk .
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The point visibility graph (PVG) of P is a graph G = (V ,E ), s.t.
vi ∈ V ⇔ pi ∈ P, and vivj ∈ E ⇔ pi and pj are mutually visible
(Ghosh, 2007, Ghosh et al, 2010).
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G(V,E) :

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9}
E = {(v1, v2), (v1, v3), (v1, v4), (v1, v5),
(v2, v3), (v2, v4), (v2, v5), (v2, v6), (v2, v9),

(v3, v4), (v3, v7), (v3, v8), (v3, v9),

(v4, v5), (v4, v7), (v4, v8),

(v5, v6), (v5, v7), (v5, v9),
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The point visibility graph (PVG) of P is a graph G = (V ,E ), s.t.
vi ∈ V ⇔ pi ∈ P, and vivj ∈ E ⇔ pi and pj are mutually visible
(Ghosh, 2007, Ghosh et al, 2010).
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G(V,E) :

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9}
E = {(v1, v2), (v1, v3), (v1, v4), (v1, v5),
(v2, v3), (v2, v4), (v2, v5), (v2, v6), (v2, v9),

(v3, v4), (v3, v7), (v3, v8), (v3, v9),

(v4, v5), (v4, v7), (v4, v8),
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Given a point set P in the plane, its PVG can be computed in
O(n2) time by using the results of Chazelle et al. (1985) or
Edelsbrunner et al. (1986).



Recognition problem

Given a point set P in the plane, its PVG can be computed in
polynomial time.

Problem definition:

Given a graph G , is there a point set P on the plane such that G
is the PVG of P?

The above problem is called the recognition problem for PVGs.
Such a point set, if it exists, is called a visibility embedding of G .
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Recognition problem

Results:
I Ghosh and Roy (2015) provided the following.

(a) Three necessary conditions for recognizing PVGs,

(b) They showed that the recognition problem for PVGs is in
PSPACE,

(c) They gave a complete characterization, and using the
characterzation they designed a linear time algorithm for the
recognition of planar PVGs.



Recognition problem

Results:

I Roy (2016) showed that the recognition problem for PVGs in
general is NP-hard.

I Cardinal and Hoffman (2017) concluded the problem by
showing that the recognition problem for PVGs is complete in
∃R (exist reals).



Recognition Problem
The reduction

I We discuss the NP-hardness of the recognition problem of
PVGs (Roy, 2016).

I For the proof, we reduce 3-SAT to the recognition problem.

I We construct two graphs, a 3-SAT graph that corresponds to
a 3-SAT formula θ, and a modified slanted grid graph that
has limited number of visibility embeddings.

I We combine these two graphs to form a reduction graph that
is a PVG if and only if θ has a satisfying assignment.



Recognition Problem
The reduction

I We discuss the NP-hardness of the recognition problem of
PVGs (Roy, 2016).

I For the proof, we reduce 3-SAT to the recognition problem.

I We construct two graphs, a 3-SAT graph that corresponds to
a 3-SAT formula θ, and a modified slanted grid graph that
has limited number of visibility embeddings.

I We combine these two graphs to form a reduction graph that
is a PVG if and only if θ has a satisfying assignment.



Recognition Problem
The reduction

I We discuss the NP-hardness of the recognition problem of
PVGs (Roy, 2016).

I For the proof, we reduce 3-SAT to the recognition problem.

I We construct two graphs, a 3-SAT graph that corresponds to
a 3-SAT formula θ, and a modified slanted grid graph that
has limited number of visibility embeddings.

I We combine these two graphs to form a reduction graph that
is a PVG if and only if θ has a satisfying assignment.



Recognition Problem
The reduction

I We discuss the NP-hardness of the recognition problem of
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Recognition Problem
A basic concept

A line in a visibility embedding of a PVG is said to be preserved iff
it is a line containing only the same points in identical order in
every visibility embedding of the PVG .

p1

p2 p3 p4 p5 p6 p7 p8

p1

p2 p3p4p5 p6 p7 p8

In the visibility embeddings of the same graph above, all lines are
preserved.
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A line in a visibility embedding of a PVG is said to be preserved iff
it is a line containing only the same points in identical order in
every visibility embedding of the PVG .

p1

p2 p3 p4 p5 p6 p7 p8

p1

p2 p3p4p5 p6 p7 p8

If all lines are of a visibility embedding are preserved, then the PVG
is said to have a visibility embedding unique up to the preservation
of lines.



Recognition Problem
A basic concept

A line in a visibility embedding of a PVG is said to be preserved iff
it is a line containing only the same embedding points in identical
order in every visibility embedding of the PVG .

p1 p2 p3 p4

p6 p5 p1

p2 p3

p4

p5

p6

In the visibility embeddings of the same graph above, line p1p2p3p4

is not preserved.



Recognition Problem
Slanted grid graph
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Theorem
Every slanted grid graph has a unique visibility embedding, up to
the preservation of lines
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Every slanted grid graph has a unique visibility embedding, up to
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Recognition Problem
Modifying the slanted grid graph

p1
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Start with an n × n slanted grid graph.



Recognition Problem
Modifying the slanted grid graph

L5

L6
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L1L2

L3
L4

m0

Delete a subgrid of m0(n − 2) vertices, m0 ≤ (n − 2), for
embedding the 3-SAT graph later.

Finally, to get the MSGG, add
2n4 vertices to the two topmost lines (L3 and L4) each and 25n8

vertices to the two rightmost lines (L1 and L2) each.
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Recognition Problem
Modified slanted grid graph
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Recognition Problem
Modified slanted grid graph

Theorem
Every modified slanted grid graph has a unique visibility
embedding up to the preservation of lines.

The proof of this lemma consists of a strengthening of the
following lemma.

Lemma
Let G be a PVG with visibility embedding ξ. Let L be a line in ξ
such that (i) there are l points on L, and (ii) k points not on L. If
l ≥ (k + 3)2 then L is preserved in every visibility embedding of G



Modified slanted grid graph
Proof sketch

Let the initial embedding of G containing L be φ. Consider
another visibility embedding φ′ where L is not preserved. There
can be the following cases for φ′:

1. All points of L are collinear in φ′.

a Their order is not preserved.
b Their order is the same, but som other points are also collinear

with them.

2. Not all points of L are collinear in φ′.

a At least some k + 3 points of L are collinear in φ′.
b At most k + 2 points of L are collinear in φ′.



Modified slanted grid graph
Proof sketch

p1 p2 p3 p4 p5 p6 p7 p8 p1p2 p3p4 p5p6 p7 p8

L

l

k

L′

l

k
φ φ′

Case 1 a: All points of L are collinear in φ′, but their order is not
preserved. This is not possible because some visibilities disappear
while some new visibilities appear.
.



Modified slanted grid graph
Proof sketch

p1 p2 p3 p4 p5 p6 p7 p8

L

l

k
φ φ′

pi

p1 p2 p3 p4 p5 p6 p7 p8

l + 1

k − 1

pi

L′

Case 1 b: All points of L are collinear in φ′ in the same order, but
some other points are also collinear with them. This is not possible
because any point outside of L must see at least l points, while
any point on L can see only at most k + 2 points.



Modified slanted grid graph
Proof sketch

p1 p2 p3 p4 p5 p6 p7 p8

L

k

l
φ φ′

pi

p1 p2 p3

k + 3

p4

k + 1?

Case 2 a: Not all points of L are collinear in φ′, and at least some
k + 3 points of L are collinear in φ′ (say, on line L′). The point of L
closest to this L′ sees at least k + 3 points. Since this point can see
at most 2 points of L, it must see k + 1 points that are not in L.



Modified slanted grid graph
Proof sketch

p1 p2 p3 p4 p5 p6 p7 p8

L

k

l
φ φ′

pi

k + 2

≤ k + 2≥ k + 4 rays

Case 2 b: Not all points of L are collinear in φ′, and at most
k + 2 points of L are collinear in φ′. Then a point of L must have
at least k + 4 rays emanating from it containing all the other
points of L. So the point must see at least k + 2 points not on L.



Modified slanted grid graph

I A modified form of this lemma is applied twice on an MSGG
to give the proof of the theorem. Hence the MSGG has O(n8)
vertices, as the original grid has O(n2) vertices.

I The deleted subgrid of the MSGG can be replaced with
another gadget, such that the resultant graph can have only a
limited number of visibility embeddings.
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The position of a point of the gadget can be controlled by its
visibility relationship with the MSGG.
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The position of a point of the gadget can be controlled by its
visibility relationship with the MSGG.



Recognition Problem
3-SAT graph

1. We construct a gadget called the 3-SAT graph to embed in
the deleted subgrid of an MSGG.

2. For any given 3-SAT formula θ, a 3-SAT graph of polynomial
size can be contructed in polynomial time.

3. The 3-SAT graph can be strategically embedded in a large
enough MSGG, which is again of polynomial size with respect
to the size of the 3-SAT formula.



Recognition Problem
3-SAT graph

I Once combined with the MSGG, each point of the 3-SAT
graph can be embedded only in a definite horizontal line of
the grid, while there might be a choice for the vertical line.

I After the 3-SAT graph is combined with the MSGG, it is
divided into vertical strips called variable regions and clause
regions, corresponding to the variables and clauses of θ.

I The red points represent the assignment of 0 or 1 to a
variable in θ. A red point is embedded in the left of a variable
region if the variable is assigned 1, otherwise it is embedded in
the middle of a variable region if the variable is assigned 0.



Recognition Problem
3-SAT graph

I According to their placement, each red point is to be blocked
from some yellow points that represent the occurrance of a
variable in a clause.

I These blockings are possible only by green points, that can be
embedded only on two vertical lines, one in a variable region
and the other in a clause region.

I Each clause region has a blue point that needs to be blocked
from a black point vertically above it. This blocker must also
be a green point. A visibility embedding is possible only when
each blue point has at least one green point as a blocker. If
an assignment is not satisfying then some blue point does not
have a green point as a blocker.



Recognition Problem
3-SAT graph

θ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)

x1

x4 C1 C3C2

x1 → 1

x2 → 0

x3 → 1

x4 → 0

x3

x2

C1

C1

C1
C2

C2

C2

C3

C3

C3



Recognition Problem
3-SAT graph

θ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)

x1

x4 C1 C3C2

x1 → 1

x2 → 1

x3 → 0

x4 → 1

x3

x2

C1

C2

C3

C2
C3

C1
C2

C1
C3



Recognition Problem
Reduction graph

MSGG

3− SAT

Graph

Reduction
Graph

The reduction graph has a visibility embedding if and only if the
corresponding 3-SAT formula has a satisfying assignment.

Theorem
The point visibility graph recognition problem is NP-hard.



Optimization problems

We consider graph optimization problems defined on the PVG of a
given set of points in the plane.

Theorem
The problems of Vertex Cover, Independent Set and Maximum
Clique remain NP- hard on point visibility graphs.



Optimization problems

Given a graph G (V ,E ), we transform it to a PVG G ′(V ′,E ′).



Optimization problems

We embed the vertices of G on a circle.



Optimization problems

We add points so that the new points see every point of G ′.



Optimization problems

I Let k = |V ′| − |V |.

I |MinVC (G )| = |MinVC (G ′)|+ k

I |MaxIndSet(G )| = |MaxIndSet(G ′)|

I |MaxClique(G )| = |MaxClique(G ′)|+ k

I Vertex Cover, Independent Set and Max-Clique are NP-hard
problems on PVGs (Ghosh and Roy, 2015).
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Optimization problems

I Colouring a graph is NP-hard. In fact, 3-colouring a graph is
NP-hard.

I Kara et al. (2004) characterized the PVGs that can be
3-coloured, and hence gave a polynomial algorithm for
3-colouring PVGs.

I Diwan and Roy (2017) showed that 5-colouring PVGs is
NP-hard.



Optimization problems

I Hamiltonian cycle is NP-hard on general graphs.
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Optimization problems

I If G is a PVG but not a path, then G has a Hamiltonian cycle.

I Given G and a visibility embedding of G , a Hamiltonian cycle
in G can be constructed in linear time (Ghosh and Roy, 2015).

The whole graph including edges is given as input, and so the
gift-wrapping algorithm takes only linear time, as we first find
one convex hull vertex and then go through its edge list to
find the next convex hull vertex.



Disjoint triangle partition
Basic concepts

P = {p1, p2, . . . , pn} is a given set of points in the plane.
A
A



Disjoint triangle partition
Basic concepts

A partition of P into subsets S1, S2, . . . ,Sj is a cycle partition of P,
when the points of each Si can be joined by straight line segments
to form a simple polygon i.e. no line contains all points of Si .



Disjoint triangle partition
Basic concepts

A cycle partition of a point set is disjoint when no two of the
polygons enclosed by the cycles intersect with respect to vertices,
edges or area.



Disjoint triangle partition
Basic concepts

A disjoint triangle partition of P is a disjoint cycle partition of P
where all the cycles are triangles.
A



Disjoint triangle partition
Basic concepts

I We characterize planar point sets that admit a disjoint
triangle partition and provide a polynomial time algorithm to
construct such a partition, if it exists.

I Given a set S of cycles, we characterize planar point sets that
admit a disjoint partition into cycles of S and provide a
polynomial time algorithm to construct such a partition, if it
exists.
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Disjoint triangle partition

We say that two points pi and pj of P are visible to each other if
the line segment pipj does not contain any other point of P.

A subset I of P such that no two points of I are visible from each
other is called an independent set of P.



Disjoint triangle partition

Theorem
A set P of 3n points in the plane admits a disjoint triangle
partition iff P does not contain an independent set of size n + 1.

The proof largely depends on identifying the point sets that
contain an independent set of size n + 1.

Lemma
Let P be a set of 3n points that contains an independent set I of
size n + 1. Then one of the following must hold:

1. The points in I are collinear.

2. The points in I occur on the boundary of CH(P) and
CH(I ) = CH(P). CH(P) has at most 4 vertices and the
boundary of CH(P) contains exactly 2n + 2 points of P , with
every alternate point in I . Further, every subset of 5 points in
I must contain 3 collinear points.
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Theorem
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Disjoint triangle partition

Some forbidden point sets.



Disjoint triangle partition

Theorem
A set P of 3n points in the plane admits a disjoint triangle
partition iff P does not contain an independent set of size n + 1.

Proof sketch: Suppose P admits a disjoint triangle partition and
contains an independent set of size n + 1. Then some two points
in the independent set must be in the same triangle in the triangle
partition. Since the triangles are disjoint, these two points must be
visible to each other, contradicting the fact that they are in an
independent set.

Suppose P does not contain an independent set of size n + 1. We
show that P has a disjoint triangle partition. The proof is by
induction on n. For n = 1, this is trivial. Suppose n ≥ 2.



Disjoint triangle partition

Theorem
A set P of 3n points in the plane admits a disjoint triangle
partition iff P does not contain an independent set of size n + 1.

Proof sketch: Suppose P admits a disjoint triangle partition and
contains an independent set of size n + 1. Then some two points
in the independent set must be in the same triangle in the triangle
partition. Since the triangles are disjoint, these two points must be
visible to each other, contradicting the fact that they are in an
independent set.

Suppose P does not contain an independent set of size n + 1. We
show that P has a disjoint triangle partition. The proof is by
induction on n. For n = 1, this is trivial. Suppose n ≥ 2.



Disjoint triangle partition

Theorem
A set P of 3n points in the plane admits a disjoint triangle
partition iff P does not contain an independent set of size n + 1.

Proof sketch: Suppose P admits a disjoint triangle partition and
contains an independent set of size n + 1. Then some two points
in the independent set must be in the same triangle in the triangle
partition. Since the triangles are disjoint, these two points must be
visible to each other, contradicting the fact that they are in an
independent set.

Suppose P does not contain an independent set of size n + 1. We
show that P has a disjoint triangle partition. The proof is by
induction on n. For n = 1, this is trivial. Suppose n ≥ 2.



Disjoint triangle partition

Let pi be any vertex of CH(P), pj the point in P that follows pi on
the boundary of CH(P) in clockwise order, and pk the point that
precedes pj on the boundary of CH(P \ {pi}).



Disjoint triangle partition

Let pi be any vertex of CH(P), pj the point in P that follows pi on
the boundary of CH(P) in clockwise order, and pk the point that
precedes pj on the boundary of CH(P \ {pi}).

pi
pk

pj



Disjoint triangle partition

Call this triangle pipjpk as ∆(pi )
If the remaining two points are on different sides of L then we
swap a point with the last constructed triangle.

pi
pk

pj



Disjoint triangle partition

Let P ′ = P \ {pi , pj , pk}. If If P ′ does not contain an independent
set of size n, then by induction, we are done.
If the remaining two points are on different sides.
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Let P ′ = P \ {pi , pj , pk}. If If P ′ does not contain an independent
set of size n, then by induction, we are done.
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Disjoint triangle partition
Else suppose P ′ contains 2n − 1 collinear points on some line L.
If the remaining two points are on different sides of L then we
swap a point with the last constructed triangle.
If the remaining two points are on different sides
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Disjoint triangle partition
Let these be p1, p2, . . . , p2n in left to right order along L.
If the remaining two points are on different sides of L then we
swap a point with the last constructed triangle.
If the remaining two points are on different sides



Disjoint triangle partition
For i = 1 to n, we choose the triangle p2i−1, p2i , qi , where qi is a
point in P not in L, that has not been included in any earlier
triangle, such that the angle p2i−1, p2i , qi is as small as possible,
and subject to this condition, qi is as close to p2i as possible.
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Disjoint triangle partition
For i = 1 to n, we choose the triangle p2i−1, p2i , qi , where qi is a
point in P not in L, that has not been included in any earlier
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Disjoint triangle partition
If the remaining two points are on different sides of L then we
swap a point with the last constructed triangle.
If the remaining two points are on different sides of L then we
swap a point with the last constructed triangle.



Disjoint triangle partition

If CH(P ′) satisfies the second condition, then we can conveniently
choose an alternative triangle to obtain another subset of P that
does not satisfy the condition.
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Generalized cycle partition

Theorem
Let C1,C2, . . . ,Ck be a collection of cycles of lengths
L1, L2, . . . , Lk such that Lk ≥ 4. A set P of L =

∑k
i=1 Li points

admits a disjoint cycle partition into cycles of lengths
L1, L2, . . . , Lk iff it does not contain L− k + 1 collinear points.

Lemma
If P has

∑k
i=1 Li points, not all collinear, then it is possible to

separate out Ci from P so that Ci and CH(P \ Ci ) are disjoint.
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Generalized cycle partition

The theorem is proved using the Lemma, subtracting individual
cycles from P and then partitioning the remaining points at once
when conveniently large collinearities occur.

Proof Sketch: If P contains L− k + 1 collinear points on some
line, then there are at most k − 1 points of P not in the line. Thus
in any partition of P into k parts, some part must contain all
points in the line. Thus P cannot have a cycle partition into k
cycles of lengths L1, . . . , Lk .
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General cycle partitions

Now we proceed by induction. Let P be a set of points.
If the remaining two points are on different sides of L then we
swap a point with the last constructed triangle.

S = {4, 8, 6, 4, 3, 4}
p



General cycle partitions

Let p be any vertex of CH(P), p0 the point of P that precedes p
on the boundary of CH(P), and q the point that follows p.
If the remaining two points are on different sides

S = {4, 8, 6, 4, 3, 4}
p



General cycle partitions

Then p0 and q are vertices of CH(P \ {p}) and let
p0, p1, p2, . . . , pk = q be the points of P that occur between p0

and q on the boundary of CH(P \ {p}.

S = {4, 8, 6, 4, 3, 4}
q

p

p0



General cycle partitions

If k ≥ Li − 2, we choose Ci to be the cycle p, p0, p1, p2, . . . , pLi−2.
If the remaining two points are on different sides of L then we
swap a point with the last constructed triangle.

S = {4, 8, 6, 4, 3, 4}
q

p

p0



General cycle partitions

If k ≥ Li − 2, we choose Ci to be the cycle p, p0, p1, p2, . . . , pLi−2.
If the remaining two points are on different sides of L then we
swap a point with the last constructed triangle.

S = {4, 8, 6, 4, 3, 4}
q
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General cycle partitions

If k < Li − 2, then Li > 3. We delete the points p, p1, . . . , pk−1,
and in the remaining set of P ′ of points, find a cycle C ′i of length
Li − k , using the same procedure, starting with the vertex q.

S = {4, 8, 6, 4, 3, 4}

q

p
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If k < Li − 2, then Li > 3. We delete the points p, p1, . . . , pk−1,
and in the remaining set of P ′ of points, find a cycle C ′i of length
Li − k , using the same procedure, starting with the vertex q.
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General cycle partitions

We continue this process. Suppose at some stage, among the
remaining points, the condition of the theorem is violated, and
there are L− k + 1 collinear points.

S = {4, 8, 6, 4, 3, 4}
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General cycle partitions

We continue this process. Suppose at some stage, among the
remaining points, the condition of the theorem is violated, and
there are L− k + 1 collinear points.

S = {4, 8, 6, 4, 3, 4}



General cycle partitions

Then we erase the last constructed triangle.
If the remaining two points are on different sides of L then we
swap a point with the last constructed triangle.

S = {4, 8, 6, 4, 3, 4}



General cycle partitions

We continue in a method similar to the first case of the triangle
partition method, were a large number of points are collinear.
If the remaining two points are on different sides

S = {4, 8, 6, 4, 3, 4}

pi qi

ri
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We continue in a method similar to the first case of the triangle
partition method, were a large number of points are collinear.
If the remaining two points are on different sides
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General cycle partitions

Suppose we are left with only one point on the line.
If the remaining two points are on different sides
If the remaining two points are on different sides

S = {4, 8, 6, 4, 3, 4}



General cycle partitions

We swap a point with the last constructed cycle, which is why it
must have been of length at least 4.
If the remaining two points are on different sides

S = {4, 8, 6, 4, 3, 4}

pk−1 q′k−1 qk−1
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General cycle partitions

We swap a point with the last constructed cycle, which is why it
must have been of length at least 4.
If the remaining two points are on different sides

S = {4, 8, 6, 4, 3, 4}
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General cycle partitions

This completes the disjoint cycle partition.
If the remaining two points are on different sides
If the remaining two points are on different sides

S = {4, 8, 6, 4, 3, 4}



Open problems

I The complexity of Dominating Set on PVGs is unknown.

I The disjoint cycle partition problem where each cycle is a
convex polygon, is yet to be solved.



Thank You!
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