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What is combinatorial Species

U A finite set

α
A combinatorial structure: a permutation, a

graph, a linear order, an endofunction, a set, a tree

Species A functor(rule) F that takes an n element set U and
produces the set F[U] of structures α of type F.

F
F transforms any bijection σ : U 7→ V, to a bijec-
tion F[σ] (transport) between sets F[U] and F[V].



S Species of Permutations

L Species of Linear Orders

G Species of Graphs

C Species of Cycles

E Species of Sets



P Subsets X Singletons

End Endo-
functions B Partitions

ε Elements a Trees

A Rooted
Trees

Gc
Con-
nected
Graphs



An immediate consequence of existence of transport is that the
cardinality of F[U] for a finite set U depends only on |U|. In other
words σ acts as a relabeling function on F[U]. For a species F, let
fn = |F[{1, . . . ,n}]|.

S fn = n!

L fn = n!

C fn = (n − 1)!

E fn = 1



G fn = 2(
n
2)

X fn = 1 if n = 1, 0 o.w.

P fn = 2n

End fn = nn



The ordinary generating function for a sequence {an} is the formal
power series

G(x) =
∑

n≥0
anxn

The exponential generating function for a sequence {an} is the
formal power series

F(x) =
∑

n≥0
an

xn

n!

an = 1 G(x) =
∑

n≥0
xn =

1
1− x

an = 1 F(x) =
∑

n≥0

xn

n!
= ex



We usually associate three different generating series with a given
species F.
É The exponential generating function F(x) for the labeled

structures in F[U].
É The ordinary generating function F̄(x) for the unlabeled

structures (or isomorphism classes) in F[U]

É The cycle index series, ZF(x) for the sum of cycle indices of
the automorphism groups of unlabeled structures in F[U].

For the purpose of this talk we will look only at the first.



Permutations S(x)
∑

n!xn

n! = 1
1−x

Singletons X(x) x

Set E(x) ex , fn = 1

Linear Orders L(x) 1
1−x

Cycles C log( 1
1−x), fn = n−1!

Powerset P (x) e2x, fn = 2n

Endofunctions End(x)
∑

nn xn

n!

Graphs G(x)
∑

2(
n
2) xn

n!



Algebra of Species

Let F and G be two species. We aim to construct new species
F+G, F.G, F ◦G, and F′ and F◦ so that their generating
functions satisfy
É (F+G)(x) = F(x) +G(x)
É (F.G)(x) = F(x).G(x)
É (F ◦G)(x) = F(G(x))
É F′(x) = d

dx(F(x))
É F•(x) = x d

dx(F(x))



Algebra of Species

Figure: A set U and representation of F[U]



Sum of Species

We need to define species (F + G) so that
(F+G)(x) = F(x) +G(x), i.e, the number of structures of F+G
of order n is fn + gn.

Figure: Representation of F+G

i.e., for finite set U, we take the disjoint union of F[U] and G[U].
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Eo odd
sets Eo(x) =

∑

n≥0

x2n+1

2n+ 1!
= sinh(x)

Ee even
sets Ee(x) =

∑

n≥0

x2n

2n!
= cosh(x)

E Sets E(x) = ex = cosh(x) + sinh(x)



Product of Species

We need to define species (F ·G) so that (F ·G)(x) = F(x) ·G(x).

Figure: Representation of F ·G

i.e, the number of structures of F ·G of order n is
∑

(n
i)fign−i.
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Figure: Proof that S = E ·D

D
Derangement: Permuta-
tions with no fixed point

S(x) E(x) · D(x)

D(x) e−x/(1 − x), dn = n!
∑n

0
(−1)i

i!
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More examples to try

Let Fk denote the species F restricted to sets on cardinality k.
Verify that
É F = F0 +F1 + . . . ,Fk, . . . ,
É P = E ·E.
É Pk = Ek ·E



Composition of Species
If G(0) = 0, we define species (F ◦G) so that
(F ◦G)(x) = F(G(x)).

Figure: Representing F ◦G.

Figure: Another representation.
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The number of structures of F ◦G of order n is
n
∑

k=0

∑

n1+n2+..nk=n

n!
k!n1! . . .nk!

fkgn1
gn2

..gnk



Figure: A permutation



Figure: A permutation is a set of cycles

Thus,
S(x) = E(C(x)) = eC(x) = elog 1

1−x =
1

1− x
.



Figure: A permutation is a set of cycles

Thus,
S(x) = E(C(x)) = eC(x) = elog 1

1−x =
1

1− x
.



Figure: An endofunction



Figure: An endofunction is a permutation of rooted trees

Therefore, End = S ◦A, where A is the species of rooted trees.
And thus, End(x) = 1/(1−A(x)).



É Find the generating function of B , the species of partitions of
a set, by writing it a composition of species.

É Find a relation between the generating functions of G and Gc.



Derivative

We need to define a species F′ such that F′(x) = d
dxF(x). Observe

that the number of structures of F’ of order n is fn+1.

Figure: Derivative species
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Derivative

Figure: C′ = L, Linear orders is derivative of cycle species

We already know C(x) = log 1
1−x .

Now, C′(x) = d
dx log 1

1−x = 1
1−x = L(x).



Verify that
É E′ = E
É L′ = L ·L
É (F+G)′ = F′+G′

É (F ·G)′ = F′ ·G+F ·G′

É (F ◦G)′ = (F′ ◦G) ·G′



Pointing

Pointing is the operation where we designate one of the n elements
of U as special in F[U]. Thus F•[U] will have cardinality nfn.

Figure: Representing F•



Pointing

Figure: Representing F• in terms of derivative



Let a be the species of all trees. Let A be the species of all rooted
trees. We can immediately see,

Figure: Species A of rooted trees is a•



Cayley’s formula

We now prove Cayley’s formula that there are nn−2 labeled trees.

Figure: Species V of vertebrates is a••

That is |V[n]|= n · n · |a[n]|.



Cayley’s formula

We now prove Cayley’s formula that there are nn−2 labeled trees.

Figure: It may be seen as a linear order or rooted trees

That is, we have V = L(A) and hence,
V(x) = L(A(x)) = 1/(1−A(x)).
But we have already shown that End(x) = 1/(1−A(x)). Thus,
n2 · |a[n]|= |V[n]|= |End[n]|= nn. Therefore, |a[n]|= nn−2.
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