Species of structures and Cayley's Formula

Narayanan N

IIT Madras

What is combinatorial Species

A combinatorial structure: a permutation, a graph, a linear order, an endofunction, a set, a tree

A functor(rule) F that takes an n element set U and produces the set $\mathrm{F}[\mathrm{U}]$ of structures α of type F .

F transforms any bijection $\sigma: \mathrm{U} \mapsto \mathrm{V}$, to a bijection $\mathrm{F}[\sigma]$ (transport) between sets $\mathrm{F}[\mathrm{U}]$ and $\mathrm{F}[\mathrm{V}]$.

An immediate consequence of existence of transport is that the cardinality of $\mathrm{F}[\mathrm{U}]$ for a finite set U depends only on $|\mathrm{U}|$. In other words σ acts as a relabeling function on $\mathrm{F}[\mathrm{U}]$. For a species F , let $\mathrm{f}_{\mathrm{n}}=|\mathrm{F}[\{1, \ldots, \mathrm{n}\}]|$.

S

$$
\mathrm{f}_{\mathrm{n}}=\mathrm{n}!
$$

L

$$
\mathrm{f}_{\mathrm{n}}=\mathrm{n}!
$$

C

$$
\mathrm{f}_{\mathrm{n}}=(\mathrm{n}-1)!
$$

E

$$
\mathrm{f}_{\mathrm{n}}=1
$$

The ordinary generating function for a sequence $\left\{a_{n}\right\}$ is the formal power series

$$
\mathrm{G}(\mathrm{x})=\sum_{\mathrm{n} \geq 0} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}
$$

The exponential generating function for a sequence $\left\{a_{n}\right\}$ is the formal power series

$$
\mathrm{F}(\mathrm{x})=\sum_{\mathrm{n} \geq 0} \mathrm{a}_{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{n}}}{\mathrm{n}!}
$$

We usually associate three different generating series with a given species F .

- The exponential generating function $\mathrm{F}(\mathrm{x})$ for the labeled structures in $\mathrm{F}[\mathrm{U}]$.
- The ordinary generating function $\overline{\mathrm{F}}(\mathrm{x})$ for the unlabeled structures (or isomorphism classes) in $\mathrm{F}[\mathrm{U}]$
- The cycle index series, $\mathrm{Z}_{\mathrm{F}}(\mathrm{x})$ for the sum of cycle indices of the automorphism groups of unlabeled structures in $\mathrm{F}[\mathrm{U}]$.
For the purpose of this talk we will look only at the first.

Permutations	S(x)	$\sum n!\frac{x^{n}}{n!}=\frac{1}{1-x}$
Singletons	$X(x)$	x
Set	$E(x)$	$e^{x}, f_{n}=1$
Linear Orders	$L(x)$	$\frac{1}{1-x}$
Cycles	C	$\log \left(\frac{1}{1-x}\right), f_{n}=n-1!$
Powerset	$\mathscr{P}(x)$	$e^{2 x}, f_{n}=2^{n}$
Endofunctions	$\operatorname{End}(x)$	$\sum n^{n} \frac{x^{n}}{n!}$
Graphs	$G(x)$	$\sum 2^{\left(\frac{n}{2}\right)} \frac{x^{n}}{n!}$

Algebra of Species

Let F and G be two species. We aim to construct new species $\mathrm{F}+\mathrm{G}, \mathrm{F} . \mathrm{G}, \mathrm{F} \circ \mathrm{G}$, and F^{\prime} and F° so that their generating functions satisfy

- $(\mathrm{F}+\mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x})$
- $(\mathrm{F} \cdot \mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x}) \cdot \mathrm{G}(\mathrm{x})$
- $(\mathrm{F} \circ \mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{G}(\mathrm{x}))$
- $\mathrm{F}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{F}(\mathrm{x}))$
- $\mathrm{F}^{\bullet}(\mathrm{x})=\mathrm{x} \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{F}(\mathrm{x}))$

Algebra of Species

Figure: A set U and representation of $\mathrm{F}[\mathrm{U}]$

Sum of Species

We need to define species $(F+G)$ so that
$(\mathrm{F}+\mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x})$, i.e, the number of structures of $\mathrm{F}+\mathrm{G}$ of order n is $f_{n}+g_{n}$.

Sum of Species

We need to define species $(F+G)$ so that $(\mathrm{F}+\mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x})$, i.e, the number of structures of $\mathrm{F}+\mathrm{G}$ of order n is $f_{n}+g_{n}$.

Figure: Representation of $\mathrm{F}+\mathrm{G}$

Sum of Species

We need to define species $(F+G)$ so that
$(\mathrm{F}+\mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x})$, i.e, the number of structures of $\mathrm{F}+\mathrm{G}$ of order n is $f_{n}+g_{n}$.

Figure: Representation of $\mathrm{F}+\mathrm{G}$
i.e., for finite set U, we take the disjoint union of $F[U]$ and $G[U]$.

Product of Species

We need to define species $(F \cdot G)$ so that $(F \cdot G)(x)=F(x) \cdot G(x)$.

Product of Species

We need to define species $(F \cdot G)$ so that $(F \cdot G)(x)=F(x) \cdot G(x)$.

Figure: Representation of $\mathrm{F} \cdot \mathrm{G}$

Product of Species

We need to define species $(F \cdot G)$ so that $(F \cdot G)(x)=F(x) \cdot G(x)$.

Figure: Representation of $\mathrm{F} \cdot \mathrm{G}$
i.e, the number of structures of $F \cdot G$ of order n is $\sum\binom{n}{i} f_{i} g_{n-i}$.

Figure: Proof that $\mathrm{S}=\mathrm{E} \cdot \mathrm{D}$

Figure: Proof that $\mathrm{S}=\mathrm{E} \cdot \mathrm{D}$
Derangement: Permutatons with no fixed point

$$
\mathrm{D}(\mathrm{x})
$$

$$
\mathrm{E}(\mathrm{x}) \cdot \mathrm{D}(\mathrm{x})
$$

$$
\mathrm{e}^{-\mathrm{x}} /(1-\mathrm{x}), \mathrm{d}_{\mathrm{n}}=\mathrm{n}!\sum_{0}^{\mathrm{n}} \frac{(-1)^{\mathrm{i}}}{\mathrm{i}!}
$$

More examples to try

Let F_{k} denote the species F restricted to sets on cardinality k . Verify that

- $\mathrm{F}=\mathrm{F}_{0}+\mathrm{F}_{1}+\ldots, \mathrm{F}_{\mathrm{k}}, \ldots$,
- $\mathscr{P}=\mathrm{E} \cdot \mathrm{E}$.
- $\mathscr{P}_{\mathrm{k}}=\mathrm{E}_{\mathrm{k}} \cdot \mathrm{E}$

Composition of Species

If $G(0)=0$, we define species $(F \circ G)$ so that $(\mathrm{F} \circ \mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{G}(\mathrm{x}))$.

Composition of Species

If $G(0)=0$, we define species $(F \circ G)$ so that $(\mathrm{F} \circ \mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{G}(\mathrm{x}))$.

Figure: Representing F $\circ \mathrm{G}$.

Composition of Species

If $G(0)=0$, we define species $(F \circ G)$ so that $(\mathrm{F} \circ \mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{G}(\mathrm{x}))$.

Figure: Representing $\mathrm{F} \circ \mathrm{G}$.

Figure: Another representation.

The number of structures of $\mathrm{F} \circ \mathrm{G}$ of order n is

$$
\sum_{\mathrm{k}=0}^{\mathrm{n}} \sum_{\mathrm{n}_{1}+\mathrm{n}_{2}+. . \mathrm{n}_{\mathrm{k}}=\mathrm{n}} \frac{n!}{k!n_{1}!\ldots n_{k}!} f_{k} g_{n_{1}} g_{n_{2}} . . g_{n_{k}}
$$

Figure: A permutation

Figure: A permutation is a set of cycles

Figure: A permutation is a set of cycles

Thus,

$$
\mathrm{S}(\mathrm{x})=\mathrm{E}(\mathrm{C}(\mathrm{x}))=\mathrm{e}^{\mathrm{C}(\mathrm{x})}=\mathrm{e}^{\log \frac{1}{1-\mathrm{x}}}=\frac{1}{1-\mathrm{x}}
$$

Figure: An endofunction

Figure: An endofunction is a permutation of rooted trees

Therefore, $\mathrm{End}=\mathrm{S} \circ \mathrm{A}$, where A is the species of rooted trees. And thus, $\operatorname{End}(x)=1 /(1-A(x))$.

- Find the generating function of \mathscr{B}, the species of partitions of a set, by writing it a composition of species.
- Find a relation between the generating functions of G and G^{c}.

Derivative

We need to define a species F^{\prime} such that $\mathrm{F}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{F}(\mathrm{x})$. Observe that the number of structures of F^{\prime} of order n is $\mathrm{f}_{\mathrm{n}+1}$.

Derivative

We need to define a species F^{\prime} such that $\mathrm{F}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{F}(\mathrm{x})$. Observe that the number of structures of F^{\prime} of order n is f_{n+1}.

Figure: Derivative species

Derivative

Figure: $\mathrm{C}^{\prime}=\mathrm{L}$, Linear orders is derivative of cycle species

We already know $\mathrm{C}(\mathrm{x})=\log \frac{1}{1-\mathrm{x}}$.
Now, $\mathrm{C}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}} \log \frac{1}{1-\mathrm{x}}=\frac{1}{1-\mathrm{x}}=\mathrm{L}(\mathrm{x})$.

Verify that

- $\mathrm{E}^{\prime}=\mathrm{E}$
- $\mathrm{L}^{\prime}=\mathrm{L} \cdot \mathrm{L}$
- $(\mathrm{F}+\mathrm{G})^{\prime}=\mathrm{F}^{\prime}+\mathrm{G}^{\prime}$
- $(\mathrm{F} \cdot \mathrm{G})^{\prime}=\mathrm{F}^{\prime} \cdot \mathrm{G}+\mathrm{F} \cdot \mathrm{G}^{\prime}$
- $(\mathrm{F} \circ \mathrm{G})^{\prime}=\left(\mathrm{F}^{\prime} \circ \mathrm{G}\right) \cdot \mathrm{G}^{\prime}$

Pointing

Pointing is the operation where we designate one of the n elements of U as special in $\mathrm{F}[\mathrm{U}]$. Thus $\mathrm{F}^{\bullet}[\mathrm{U}]$ will have cardinality nf_{n}.

Figure: Representing F ${ }^{\bullet}$

Pointing

Figure: Representing F^{\bullet} in terms of derivative

Let a be the species of all trees. Let A be the species of all rooted trees. We can immediately see,

Figure: Species A of rooted trees is a^{\bullet}

Cayley's formula

We now prove Cayley's formula that there are $\mathrm{n}^{\mathrm{n}-2}$ labeled trees.

Figure: Species V of vertebrates is $\mathrm{a}^{\bullet \bullet}$

That is $|\mathrm{V}[\mathrm{n}]|=\mathrm{n} \cdot \mathrm{n} \cdot|\mathrm{a}[\mathrm{n}]|$.

Cayley's formula

We now prove Cayley's formula that there are $\mathrm{n}^{\mathrm{n}-2}$ labeled trees.

Figure: It may be seen as a linear order or rooted trees

That is, we have $\mathrm{V}=\mathrm{L}(\mathrm{A})$ and hence,
$\mathrm{V}(\mathrm{x})=\mathrm{L}(\mathrm{A}(\mathrm{x}))=1 /(1-\mathrm{A}(\mathrm{x}))$.
But we have already shown that $\operatorname{End}(x)=1 /(1-A(x))$. Thus, $\mathrm{n}^{2} \cdot|\mathrm{a}[\mathrm{n}]|=|\mathrm{V}[\mathrm{n}]|=|\operatorname{End}[\mathrm{n}]|=\mathrm{n}^{\mathrm{n}}$. Therefore, $|\mathrm{a}[\mathrm{n}]|=\mathrm{n}^{\mathrm{n}-2}$.

References

1. Lectures of Xavier Viennot (now available at youtube matsciencechannel).
2. Book: Species of Combinatorial Structures by F. Bergerone, G. Labelle, and P. Leroux.
