Spanning Trees for Colored Point Sets

<u>Carleton:</u> A. Biniaz, P. Bose, K. Crosbie, A. Maheshwari, P. Morin, M. Smid <u>U. Ottawa:</u> J.L. De Carufel <u>UC Irvine:</u> D. Eppstein

Outline

Preliminaries

Problem Definition

MinST of $K_{R,B}$

$O(n \log^3 n) \to O(n \log n)$

Plane Spanning Trees

Open Problems

VD, DT, and MST

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2

3/31

A Point Set *P*:

Preliminaries Problem Definition MinST of $K_{R,B}$ $O(n \log^3 n) \rightarrow O(n \log n)$ Plane Spanning Trees Open Problems

VD, DT, and MST

Complete Graph $K_{|P|}$:

3/31

Problem: Compute MST of $K_{|P|}$

Preliminaries Problem Definition MinST of $K_{R,B} = O(n \log^3 n) \rightarrow O(n \log n)$ Plane Spanning Trees Open Problem

VD, DT, and MST

Voronoi Diagram of P:

$O(n \log n)$ [SH75]

 Preliminaries Problem Definition MinST of $K_{R,B}$ $O(n \log^3 n) \rightarrow O(n \log n)$ Plane Spanning Trees Open Problems

VD, DT, and MST

Delaunay Triangualtion of P:

VD, DT, and MST

Euclidean MST of Complete Graph $K_{|P|}$:

イロン イヨン イヨン イヨン

2

3/31

Empty Circle property of Edges in DT(P)

Preliminaries Problem Definition MinST of $K_{R,B}$ $O(n \log^3 n) \rightarrow O(n \log n)$ Plane Spanning Trees Open Problems

$MST \subseteq DT$

All edges of MST satisfy the empty-circle property. All edges satisfying the empty-circle property $\in DT$. $\Rightarrow MST \subseteq DT$.

Algorithm for computing MST

Algorithm:

- Compute Delaunay Triangulation of P. Let G be the graph corresponding to DT(P).
- Compute MST of G by executing any of Kruskal or Prim or <u>Borůvka's</u> algorithm.

Time Complexity:

- Let n = |P|.
- DT(P) is plane and has O(n) edges.
- MST can be computed in $O(n \log n)$ time.

Theorem: Euclidean MST of *n* points in plane can be computed in $O(n \log n)$ time.

Problem Definition

Input: P = A set of *n* coloured points in plane.

 $\underline{\mathsf{Graph:}} \ G = (V, E)$

1.
$$V = P$$
.

2. Edge between every pair of points of different colors.

3. Weight of $e = (uv) \in E$ is |uv|.

Output: A minimum/maximum Euclidean Spanning Tree of G.

Minimum and Maximum Spanning Trees

Note:

G is complete bipartite graph $K_{R,B}$ for Min/Max-2-ST problems. *G* is complete multipartite graph for Min/Max-4-ST problems.

MST for Bichromatic Point Sets

Input: $P = R \cup B$ a collection of Red and Blue points.

Graph: A Complete Bipartite graph $G = K_{R,B}$.

Output: Euclidean Minimum Spanning Tree of G.

Algorithm: Execute Borůvka's MST algorithm on G.

Borůvka's algorithm

Input: G

Output: T := MST(G)

1. $T := \emptyset$

 For each vertex v, find the edge with minimum weight incident on v (say vw).

$$3. T := T \cup \{vw\}.$$

- 4. Identify v and w.
- 5. Repeat Steps 2-4 till G has more than one vertex.

Borůvka's algorithm

Input: G

Output: T := MST(G)

1. $T := \emptyset$

- 2. For each vertex v, find the edge with minimum weight incident on v (say vw).
- 3. $T := T \cup \{vw\}.$
- 4. Identify v and w.
- 5. Repeat Steps 2-4 till G has more than one vertex.

Observation: Steps 2-4 execute at most $O(\log n)$ times. Why? Question: How to use geometry to execute Step 2 efficiently?

NN(p) = Nearest blue point to p exterior to its component

NN(p) = Nearest blue point to p exterior to its component

Find NN(p) among blue points corresponding to components labelled with significant bit = 0

NN(p) among blue points with components with middle bit = 1

NN(p) among blue points with components with LSB = 0

Choose the nearest among $O(\log n)$ potential nearest neighbours:

Complexity Analysis

For each phase (Steps 2-4) of Borůvka's algorithm, we compute

- 1. $O(\log n)$ Voronoi diagrams of subsets of blue points.
- 2. For each red point *p*, we perform *NN*(*p*) queries in blue-Voronoi diagrams.
- 3. We do the same computation where the roles of red and blue colors are reversed.

14/31

Complexity of each phase = $O(n \log^2 n)$.

Total Complexity = $O(n \log^3 n)$.

Bi-chromatic Closest Pair Problem

For each component, find the closest red-blue pair, where one point is outside the component.

Problem: Find $BCP(B_i, R \setminus R_i)$ and $BCP(R_i, B \setminus B_i)$.

Algorithm for computing $BCP(B_i, R \setminus R_i)$

Input: A set of $R \cup B$ points, partitioned among components $\overline{P_i} = R_i \cup B_i$. Output: For each $P_i = R_i \cup B_i$, $\overline{BCP(B_i, R \setminus R_i)} = \text{its nearest red point in } R \setminus R_i$

- 1. Construct DT(R)
- 2. For each component *i* do
 - 2.1 Compute

 $T_i = \{ p \in \mathbb{R} \setminus \mathbb{R}_i : \text{ in } DT(\mathbb{R}), p \text{ is adjacent to a point in } \mathbb{R}_i \}$

- 2.2 Construct $DT(B_i \cup T_i)$
- 2.3 $BCP(B_i, R \setminus R_i)$ = the endpoints of a shortest red-blue edge in $DT(B_i \cup T_i)$

Computation of $BCP(B_i, R \setminus R_i)$

 T_i from DT(R):

Computation of $BCP(B_i, R \setminus R_i)$

Isolating $T_i \cup B_i$:

Computation of $BCP(B_i, R \setminus R_i)$

 $BCP(B_i, R \setminus R_i)$ from $DT(T_i \cup B_i)$:

 $DT(T_i \cup B_i)$

・ロ ・ < 回 ・ < 言 ・ < 言 ・ こ ・ う へ で 17/31

Proof of Correctness

Why is $BCP(B_i, R \setminus R_i) = BCP(B_i, T_i)$? Let $b \in B_i$ and $p \in R \setminus R_i$, such that $\{b, p\} = BCP(B_i, R \setminus R_i)$. Why DT(R) has an edge from some point $q \in R_i$ to p?

Proof of Correctness

Why is $BCP(B_i, R \setminus R_i) = BCP(B_i, T_i)$? Let $b \in B_i$ and $p \in R \setminus R_i$, such that $\{b, p\} = BCP(B_i, R \setminus R_i)$. Why DT(R) has an edge from some point $q \in R_i$ to p?

Proof of Correctness

Why is $BCP(B_i, R \setminus R_i) = BCP(B_i, T_i)$? Let $b \in B_i$ and $p \in R \setminus R_i$, such that $\{b, p\} = BCP(B_i, R \setminus R_i)$. Why DT(R) has an edge from some point $q \in R_i$ to p?

Complexity Analysis

For $BCP(B_i, R \setminus R_i)$ computation:

- $-\sum_{i} |T_{i}| = \sum_{\substack{r \in R \\ O(D)}} degree(r) \text{ in } DT(R) = O(|R|)$
- $-\sum_{i}|B_{i}|=O(|B|)$
- $\forall i, DT(T_i \cup B_i)$ can be computed in $O(n \log n)$ time
- $\Rightarrow \forall i, BCP(B_i, \mathbb{R} \setminus \mathbb{R}_i)$ can be computed in $O(n \log n)$ time
- Same holds for $BCP(R_i, B \setminus B_i)$.

Borůvka's algorithm has $O(\log n)$ phases. \Rightarrow MST of $\mathbb{R} \cup \mathbb{B}$ can be computed in $O(n \log^2 n)$ time.

イロト 不得 とくほと くほとう ほ

19/31

Preliminaries Problem Definition MinST of $K_{R,B}$ $O(n \log^3 n) \rightarrow O(n \log n)$ Plane Spanning Trees Open Problems

MinST of $B \cup R$

- Computation of BCP uses $DT(T_i \cup B_i)$.
- $DT(T_i \cup B_i)$, for each *i*, can be computed by the algorithms for maintaining DT under merge/split operations.
- Apply Dynamic Data Structures + Amortization Arguments:

Theorem: MST of $R \cup B$ can be computed in $\Theta(n \log n)$ time.

MaxST of $B \cup R$

I: For every edge (r, b) in MaxST, either $r \in CH(R)$ or $b \in CH(B)$.

II: Longest edge between R and B has an endpoint in CH(R) and an endpoint in CH(B).

Borůvka's algorithm + above observations + fartherst-point VD + BFP($B_i, R \setminus R_i$) and BFP($R_i, B \setminus B_i$) leads to **Theorem:** MaxST of $R \cup B$ can be computed in $\Theta(n \log n)$ time.

Plane Max ST

Input: A set of coloured points P (and a complete multi-partite graph G on P).

Output: A Plane Maximum Spanning Tree of G.

Results on Plane Min/Max ST

#colors	Min/Max	Exact	Approx.	Reference
	Min	$\Theta(n \log n)$		SH75
	Max	NP-Hard?	2	ARS93
			1.993	DT10
			1.989	BBdCCEMS17
2	Min	NP-Hard	\sqrt{n}	BvKLLMSV09
	Max		4	BBdCCEMS17
3	Max		6	BBdCCEMS17
\geq 4	Max		8	BBdCCEMS17

4-approx for Bichormatic Plane Max ST

Output: Max of $\{T_a, T_b, T_c, T_d\}$

<ロ > < 部 > < 言 > < 言 > 言 の < で 24/31

Analysis

- T^* = an optimal tree.
- Root T^* at a red vertex r.
- Orient edges away from r.
- E_r = Edges from red vertices to blue vertices.
- $E_b = Edges$ from blue vertices to red vertices.
- $Cost(T^*) = Cost(E_r) + Cost(E_b)$
- Let $Cost(E_r) \leq Cost(E_b) \Rightarrow Cost(T^*) \leq 2Cost(E_b)$
- Let *ab* be a diameter of red points.
- We show: For each blue vertex b', its distance to any red vertex r' satisfies |b'r'| < |b'a| + |b'b|.
- $\Rightarrow Cost(E_b) < Cost(T_a) + Cost(T_b)$
- \Rightarrow Cost(T^{*}) < 4Max(T_a, T_b, T_c, T_d)

8-approx for multi-coloured Plane Max ST

We compute 8 different stars.

- $\alpha\beta$ = chromatic diameter of point set *P*
- ab = red diameter; cd = blue diameter
- ef = chromatic diameter of $(P \setminus \{ \text{Red} \cup \text{Blue} \})$.

Output: Max of $\{T_{\alpha}, T_{\beta}, T_{a}, T_{b}, T_{c}, T_{d}, T_{e}, T_{f}\}$

 $\begin{array}{ccc} \mbox{Preliminaries} & \mbox{Problem Definition} & \mbox{MinST of } K_{R,B} & O(n\log^3 n) \rightarrow O(n\log n) & \mbox{Plane Spanning Trees} & \mbox{Open Problems} \end{array}$

Plane Bi-chromatic ST for Convex Point Sets

- Assume $P = R \cup B$ and $|R| \ge |B|$
- Min/Max Spanning Plane Tree in $O(|\mathbf{R}|^2|\mathbf{B}|)$ time.
- Based on Dynamic Programming.

 $\begin{array}{lll} \mbox{Preliminaries} & \mbox{Problem Definition} & \mbox{MinST of } K_{R,B} & O(n\log^3 n) \rightarrow O(n\log n) & \mbox{Plane Spanning Trees} & \mbox{Open Problems} \end{array}$

Plane Bi-chromatic ST for Semi-collinear Point Sets

 $O(|R|^3|B|^2)$ dynamic programming algorithm for Min/Max/Bottleneck/... Plane bi-chromatic Spanning Trees.

(a)

28/31

Problems to Ponder

- For k-coloured versions, Min-k-ST is computed in $O(n \log n \log k)$ time. Optimal for k = 2 and k = n. What about other values of k?
- For plane Min/Max ST
 - 1. $O(\sqrt{n})$ -approximation for Min ST is known in $K_{|P|}$. Improvements?

2. Is ratio of
$$\frac{wt(Plane Min ST)}{wt(MST)} \le 1.5$$
 in $K_{R,B}$?

- 3. Characterization of edges in $K_{R,B}$ in Plane Min/Max ST?
- 4. Given a Plane ST of $K_{R,B}$, is it optimal?
- 5. Semi-collinear case: Red points on both sides of the line?

Preliminaries Problem Definition MinST of $K_{R,B} = O(n \log^3 n) \rightarrow O(n \log n)$ Plane Spanning Trees **Open Problems**

Thanks a lot for listening Questions/Comments?

February(avg): Ottawa: -9.2C; Snowfall 35cm

