

Flows Over Time and Submodular Function Minimization

Martin Skutella

MATHEON @ Technische Universität Berlin

CALDAM 2017 School on Algorithms and Combinatorics February 14th, 2017

1 Short introduction to network flows over time

Maximum s-t-flow over time problem [Ford, Fulkerson 1958]

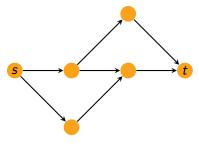
3 Transshipment over time and submodular functions [Schlöter, Sk. 2017]

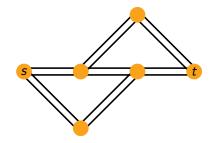
4 Conclusion

Martin Skutella

Flows Over Time and Submodular Function Minimization

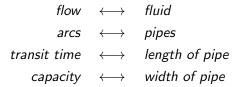
Flows Over Time: Intuition

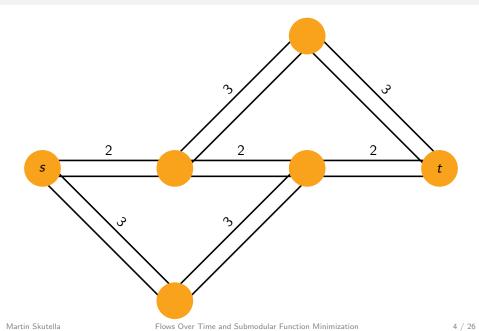


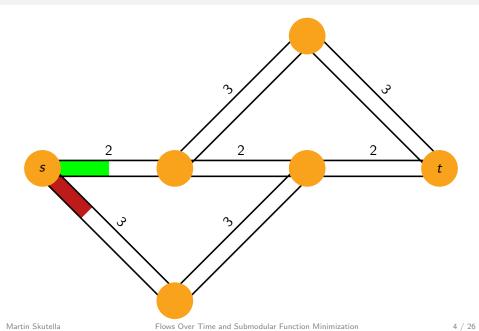


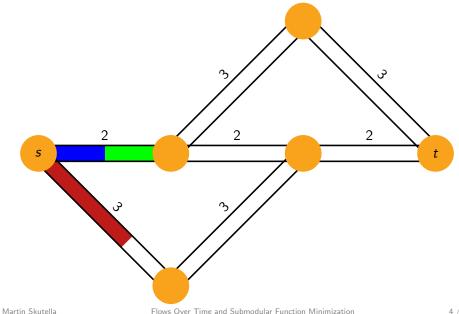
graph / network

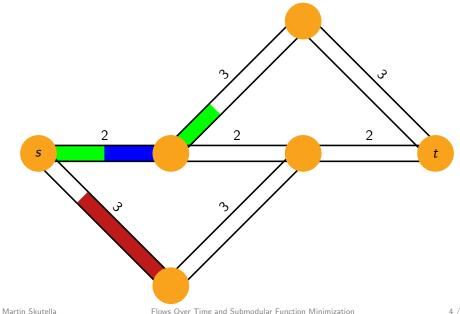
network of pipelines

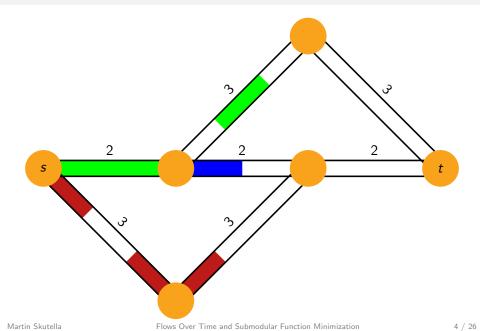


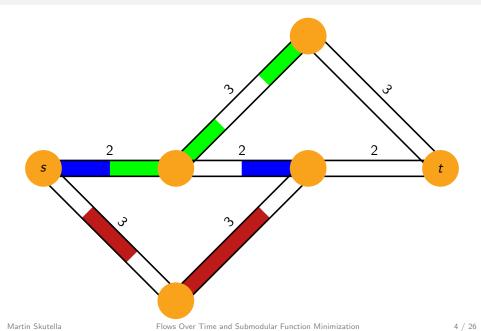


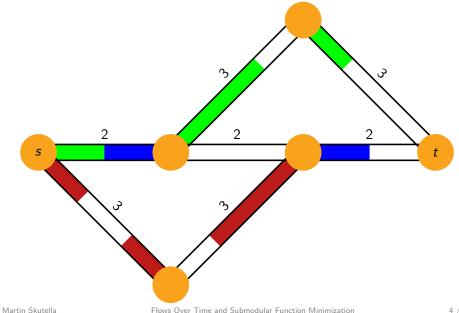


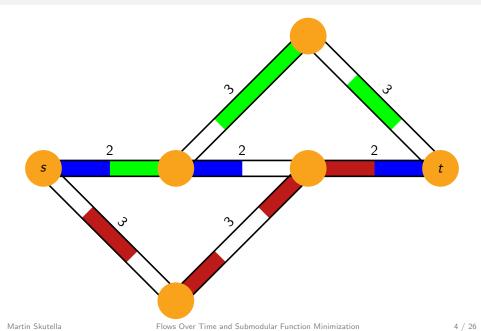


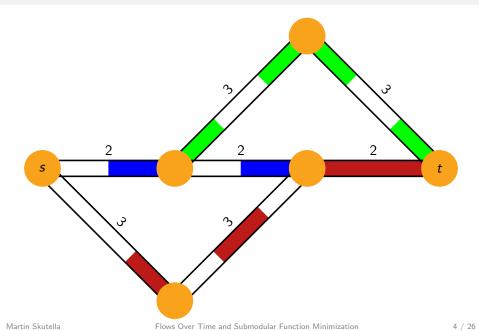


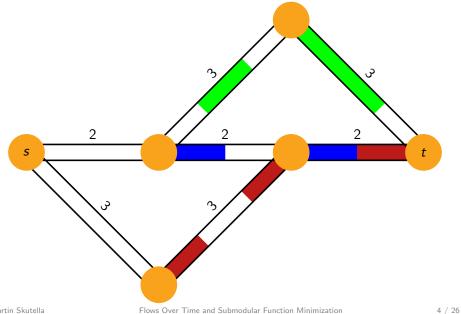


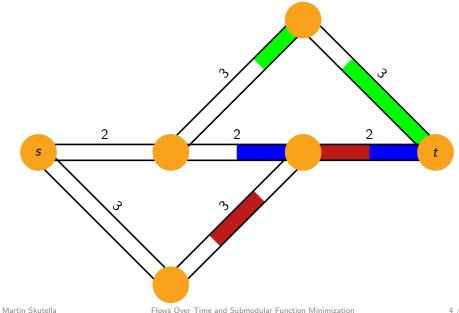


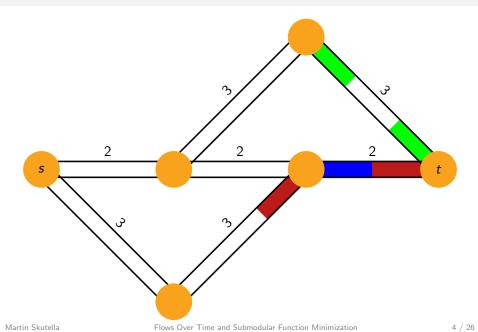


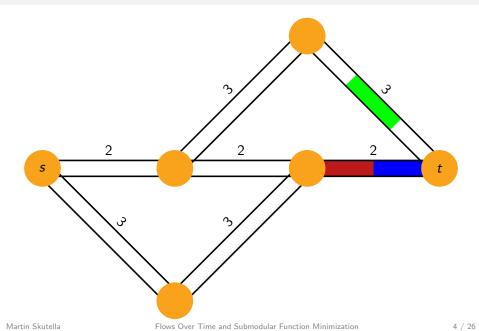


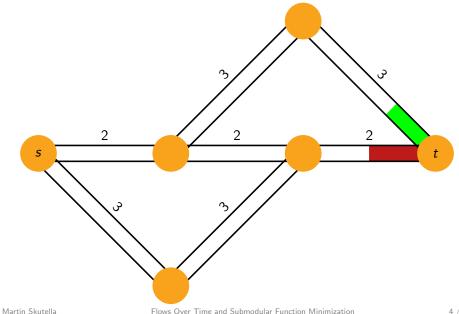


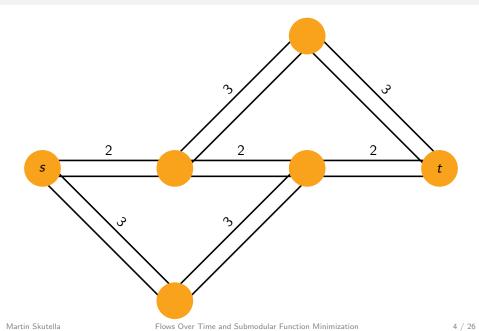












Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- time horizon T

Definition.

A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- time horizon T

Definition.

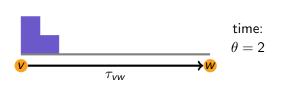
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- ▶ time horizon T



Definition.

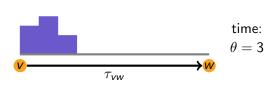
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- ▶ time horizon T



Definition.

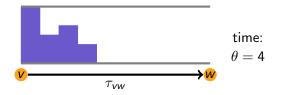
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- ▶ time horizon T



Definition.

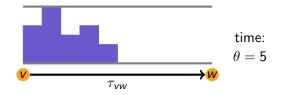
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- time horizon T



Definition.

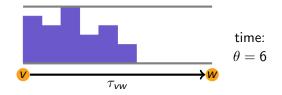
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- ▶ time horizon T



Definition.

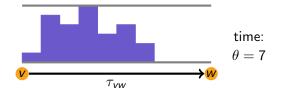
A flow over time with time horizon T is a family of functions

$$f_{a}: \{1,\ldots,T\}
ightarrow \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- time horizon T



Definition.

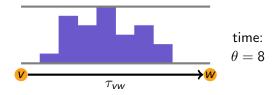
A flow over time with time horizon T is a family of functions

$$f_{a}: \{1,\ldots,T\}
ightarrow \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- time horizon T



Definition.

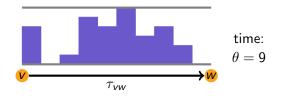
A flow over time with time horizon T is a family of functions

$$f_{a}: \{1,\ldots,T\}
ightarrow \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- ▶ time horizon T



Definition.

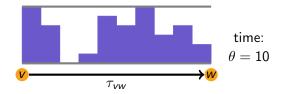
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- time horizon T



Definition.

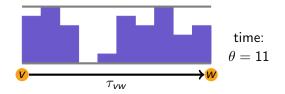
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- time horizon T



Definition.

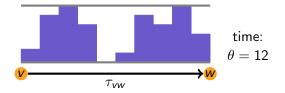
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- ▶ time horizon T



Definition.

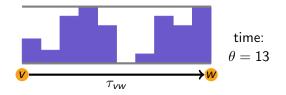
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- ▶ time horizon T



Definition.

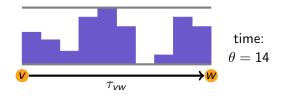
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- ▶ time horizon T



Definition.

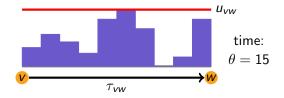
A flow over time with time horizon T is a family of functions

$$f_a: \{1,\ldots,T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

Given:

- digraph D = (V, A)
- capacities u_a , $a \in A$
- transit times τ_a , $a \in A$
- ▶ time horizon T



Definition.

A flow over time with time horizon T is a family of functions

$$f_a: \{1, \ldots, T\} o \mathbb{R}_{\geq 0}, \qquad ext{for } a \in A,$$

- $f_a(\theta) \leq u_a$ for all a, θ (capacity constraints),
- flow conservation at nodes.

1 Short introduction to network flows over time

2 Maximum s-t-flow over time problem [Ford, Fulkerson 1958]

3 Transshipment over time and submodular functions [Schlöter, Sk. 2017]

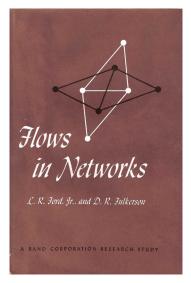
4 Conclusion

Martin Skutella

Flows Over Time and Submodular Function Minimization

The Maximum s-t-Flow Over Time Problem

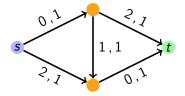
Ford & Fulkerson (1958/62) introduce flows over time ("dynamic flows").



Flows Over Time and Submodular Function Minimization

The Maximum s-t-Flow Over Time Problem

Ford & Fulkerson (1958/62) introduce *flows over time* ("dynamic flows"). Given: D = (V, A), $s, t \in V$, capacity u_a , transit time τ_a , time horizon T



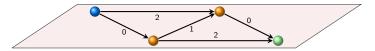
Aim: send max amount of flow from source s to sink t within time T

Time Expanded Networks

Observation. (Ford & Fulkerson 1958/62)

Flows over time correspond to static flows in time-expanded networks.

Example:

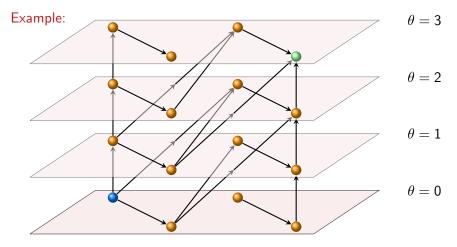


Martin Skutella

Time Expanded Networks

Observation. (Ford & Fulkerson 1958/62)

Flows over time correspond to static flows in time-expanded networks.



Martin Skutella

Pros and Cons of Time Expanded Networks

Pros:

- Many flow over time problems can be solved by static flow algorithms in time-expanded networks.
- Thus, the entire algorithmic toolbox developed for static flows is also available for flows over time.

Cons:

- In practical applications: Size of the time-expanded network leads to huge memory requirement for computations (depending on T).
- In theory: Only pseudo-polynomial algorithms, since the size of the time-expanded network is pseudo-polynomial in the input size.

Fleischer & Sk. (2007), ...:

Small 'condensed' time-expanded networks of provable quality.

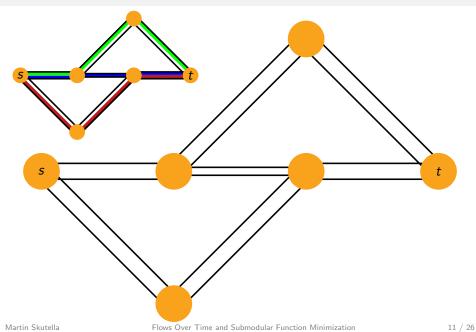
Martin Skutella

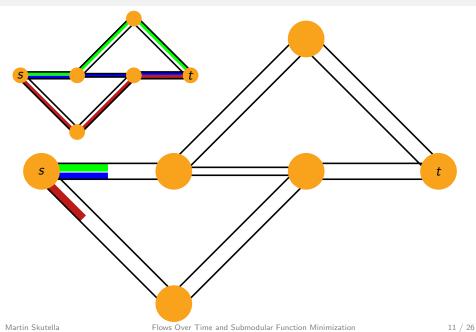
Computing Maximum s-t-Flows Over Time Efficiently

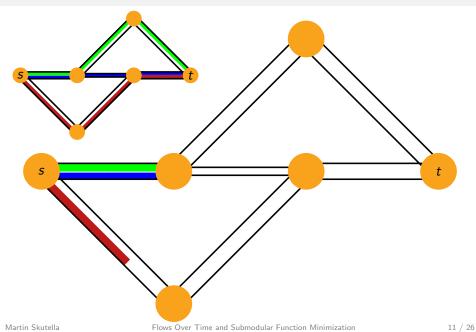
Algorithm. [Ford, Fulkerson 1958] 1 compute static s-t-flow x in G maximizing $T |x| - \sum_{a \in A} \tau_a x_a$ 2 decompose x into flows x_P on s-t-paths $P \in \mathcal{P}$ such that

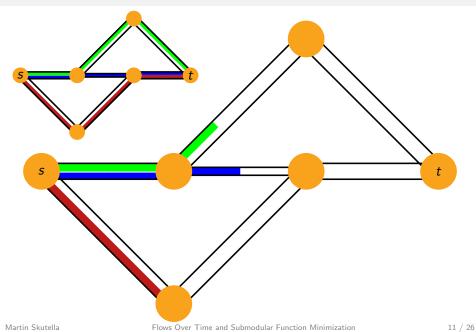
$$x_a = \sum_{P \in \mathcal{P} \ a \in P} x_P$$
 for all $a \in A$

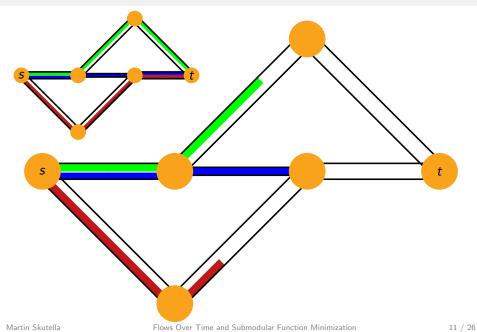
3 send flow at rate x_P into paths P ∈ P, as long as there is enough time left to arrive at the sink before time T

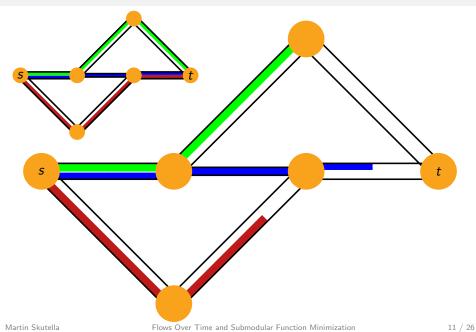


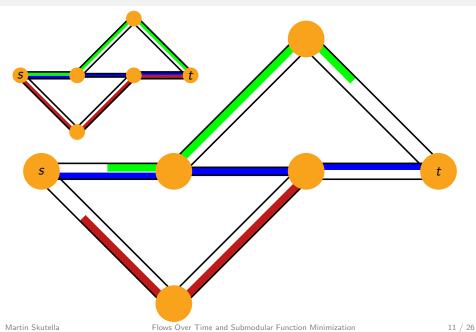


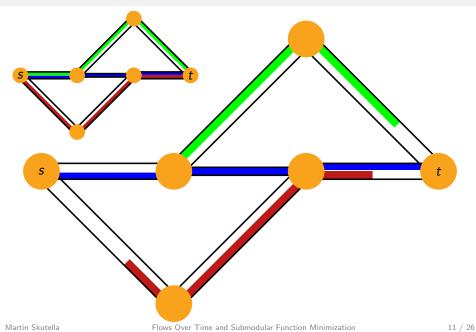


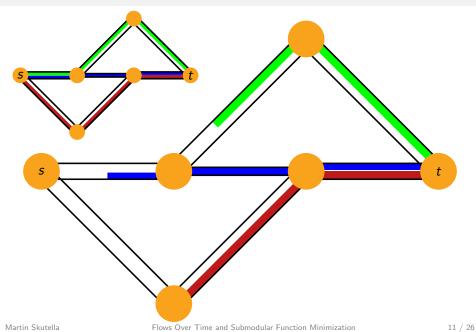


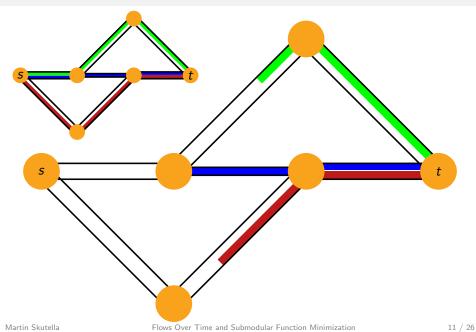


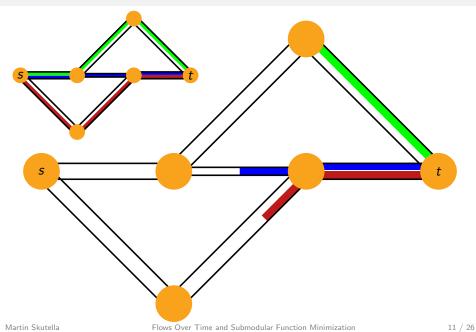


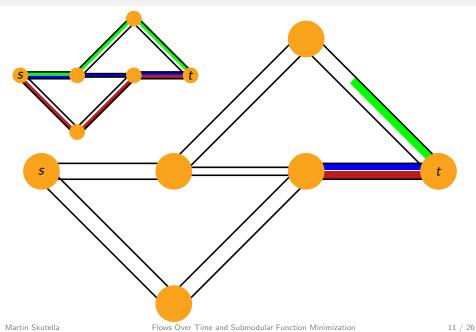


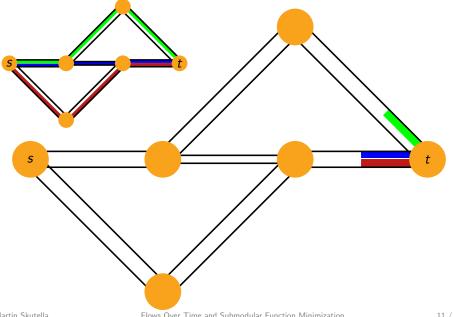


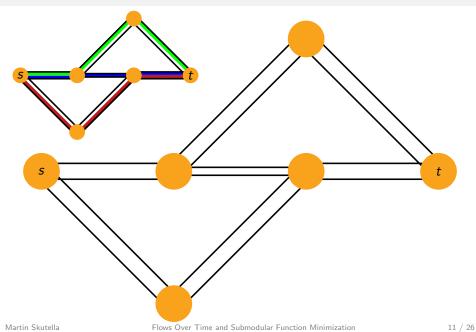












Proof of Optimality

Theorem. [Ford, Fulkerson 1958]

- **1** The resulting *s*-*t*-flow over time *f* has maximum value.
- 2 The running time of the algorithm is dominated by the (static) min-cost flow computation in step 1.

Proof: f has flow value

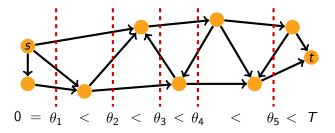
$$|f| = \sum_{P \in \mathcal{P}} (T - \tau_P) x_P = T |x| - \sum_{a \in A} \tau_a x_a$$
.

Notice that x maximizes the right hand side (step 1)...

Proof (cont.): s-t-Cuts Over Time

Definition.

An *s*-*t*-*cut* over time is given by threshold values $\alpha_v \in [0, \infty)$ for all $v \in V$ with $\alpha_s = 0$ and $\alpha_t \ge T$. A node $v \in V$ belongs to the *right hand side* until time α_v , and afterwards to the *left hand side* of the cut.



Proof (cont.): s-t-Cuts Over Time

Definition.

An *s*-*t*-*cut* over time is given by threshold values $\alpha_v \in [0, \infty)$ for all $v \in V$ with $\alpha_s = 0$ and $\alpha_t \ge T$. A node $v \in V$ belongs to the *right hand side* until time α_v , and afterwards to the *left hand side* of the cut.

Observation. Flow can cross the cut from left to right on arc a = (v, w) during time interval $[\alpha_v, \alpha_w - \tau_a)$.

$$\alpha_{\mathbf{v}} \underbrace{\mathbf{v}}_{\mathbf{\tau}\mathbf{a}} \underbrace{\tau_{\mathbf{a}}}_{\mathbf{w}} \alpha_{\mathbf{w}}$$

Definition and Lemma.

The capacity of an s-t-cut over time is

$$\sum_{\mathbf{u}=(\mathbf{v},\mathbf{w})\in A} u_{\mathbf{a}} \max\{\mathbf{0}, \alpha_{\mathbf{w}} - \tau_{\mathbf{a}} - \alpha_{\mathbf{v}}\} \ .$$

This is an upper bound on the maximum flow over time value.

Martin Skutella

Max Flow Over Time = Min Cut Over Time

The value of the *s*-*t*-flow over time computed above equals

Notice that $y_a = \max\{0, \alpha_w - \tau_a - \alpha_v\}$ in an optimal dual solution and, w.l.o.g., $\alpha_s = 0$, $\alpha_t \ge T$.

Theorem. [Ford, Fulkerson 1958]

Maximum flow over time value equals minimum cut over time capacity.

Martin Skutella

The Complexity Landscape of Flows Over Time

	<i>s-t</i> -flow	trans- shipment	min-cost	multi- commodity
static flow	polynomial		polynomial	polyn. (LP)
flow over time	polynomial static min- cost flow [1]	polynomial minimize submodular functions [2,3]	NP-hard [4]	NP-hard [5]

References.

[1] Ford & Fulkerson (1958)

[2] Hoppe & Tardos (1995)

[3] Schlöter & Sk. (2017)

Martin Skutella

Flows Over Time and Submodular Function Minimization

[4] Klinz & Woeginger (1995)

[5] Hall, Hippler & Sk. (2007)

1 Short introduction to network flows over time

2 Maximum *s-t-*flow over time problem [Ford, Fulkerson 1958]

3 Transshipment over time and submodular functions [Schlöter, Sk. 2017]

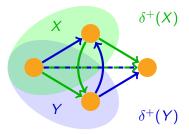
4 Conclusion

Martin Skutella

Submodular Function Minimization (SFM)

Definition. For a finite set U, function $g : 2^U \to \mathbb{R}$ is submodular if $g(X) + g(Y) \ge g(X \cup Y) + g(X \cap Y)$ for all $X, Y \subseteq U$.

Example. Cut function of network D = (V, A) with capacities $u : A \to \mathbb{R}$: $X \mapsto u(\delta^+(X))$ for $X \subseteq V$



Submodular Function Minimization (SFM)

Definition. For a finite set U, function $g : 2^U \to \mathbb{R}$ is submodular if $g(X) + g(Y) \ge g(X \cup Y) + g(X \cap Y)$ for all $X, Y \subseteq U$.

Example. Cut function of network D = (V, A) with capacities $u : A \to \mathbb{R}$: $X \mapsto u(\delta^+(X))$ for $X \subseteq V$

Submodular function minimization (SFM).

min g(X) s.t. $X \subseteq U$

Theorem. SFM can be solved in strongly polynomial time.

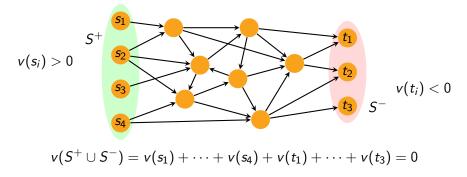
- ellipsoid method [Grötschel, Lovàsz, Schrijver 1982,1988]
- combinatorial algorithm [Schrijver 2000, Iwata et al. 2000, Orlin 2009]
- currently fastest [Lee, Sidford, Wong 2015]

Martin Skutella

Transshipment Over Time Problem

Given: D = (V, A), u_a , τ_a for $a \in A$, sources/sinks $S^+, S^- \subset V$ with supplies/demands $v : S^+ \cup S^- \to \mathbb{R}$, time horizon T.

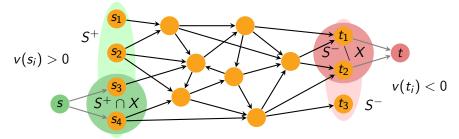
Task: Find flow over time f satisfying supplies/demands within time T.



Transshipment Over Time Problem

Given: D = (V, A), u_a , τ_a for $a \in A$, sources/sinks $S^+, S^- \subset V$ with supplies/demands $v : S^+ \cup S^- \to \mathbb{R}$, time horizon T.

Task: Find flow over time f satisfying supplies/demands within time T.



Definition. Let $o: 2^{S^+ \cup S^-} \to \mathbb{R}$ be defined as follows: for $X \subseteq S^+ \cup S^$ o(X) := value of max flow over time from $S^+ \cap X$ to $S^- \setminus X$

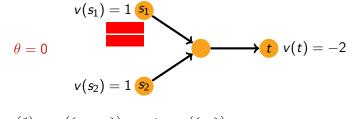
Lemma. [Klinz 1994] The problem is feasible if and only if

$$o(X) \ge v(X)$$
 for all $X \subseteq S^+ \cup S^-$

Martin Skutella

Definition. Let $o: 2^{S^+ \cup S^-} \to \mathbb{R}$ be defined as follows: for $X \subseteq S^+ \cup S^$ o(X) := value of max flow over time from $S^+ \cap X$ to $S^- \setminus X$

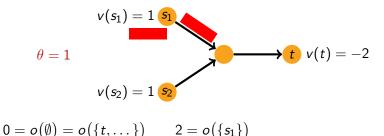
Lemma. [Klinz 1994] The problem is feasible if and only if $o(X) \ge v(X)$ for all $X \subseteq S^+ \cup S^-$.



$$0 = o(\emptyset) = o(\lbrace t, \ldots \rbrace) \qquad 2 = o(\lbrace s_1 \rbrace)$$

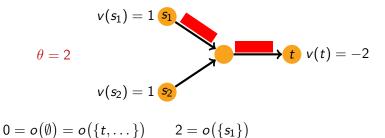
Definition. Let $o: 2^{S^+ \cup S^-} \to \mathbb{R}$ be defined as follows: for $X \subseteq S^+ \cup S^$ o(X) := value of max flow over time from $S^+ \cap X$ to $S^- \setminus X$

Lemma. [Klinz 1994] The problem is feasible if and only if $o(X) \ge v(X)$ for all $X \subseteq S^+ \cup S^-$.



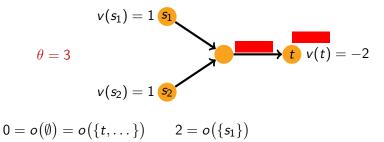
Definition. Let $o: 2^{S^+ \cup S^-} \to \mathbb{R}$ be defined as follows: for $X \subseteq S^+ \cup S^$ o(X) := value of max flow over time from $S^+ \cap X$ to $S^- \setminus X$

Lemma. [Klinz 1994] The problem is feasible if and only if $o(X) \ge v(X)$ for all $X \subseteq S^+ \cup S^-$.



Definition. Let $o: 2^{S^+ \cup S^-} \to \mathbb{R}$ be defined as follows: for $X \subseteq S^+ \cup S^$ o(X) := value of max flow over time from $S^+ \cap X$ to $S^- \setminus X$

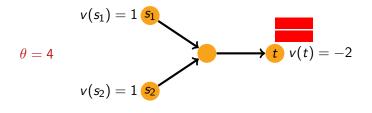
Lemma. [Klinz 1994] The problem is feasible if and only if $o(X) \ge v(X)$ for all $X \subseteq S^+ \cup S^-$.



Definition. Let $o: 2^{S^+ \cup S^-} \to \mathbb{R}$ be defined as follows: for $X \subseteq S^+ \cup S^$ o(X) := value of max flow over time from $S^+ \cap X$ to $S^- \setminus X$

Lemma. [Klinz 1994] The problem is feasible if and only if $o(X) \ge v(X)$ for all $X \subseteq S^+ \cup S^-$.

Example. capacities $u \equiv 1$, transit times $\tau \equiv 1$, T = 4



 $0 = o(\emptyset) = o(\lbrace t, \ldots \rbrace) \qquad 2 = o(\lbrace s_1 \rbrace) = o(\lbrace s_2 \rbrace) = o(\lbrace s_1, s_2 \rbrace)$

Definition. Let $o: 2^{S^+ \cup S^-} \to \mathbb{R}$ be defined as follows: for $X \subseteq S^+ \cup S^$ o(X) := value of max flow over time from $S^+ \cap X$ to $S^- \setminus X$

Lemma. [Klinz 1994] The problem is feasible if and only if

$$o(X) \ge v(X)$$
 for all $X \subseteq S^+ \cup S^-$.

Observations.

- $X \mapsto o(X)$ is submodular (cut function in time-expanded network)
- ► also $X \mapsto o(X) v(X)$ is submodular (as v is modular)

 \implies Check existence of feasible transshipment over time via one SFM.

Theorem. [Hoppe, Tardos 1995] Compute transshipment over time via $O(|S^+ \cup S^-|)$ calls to SFM oracle.

Theorem. [Schlöter, Sk. 2017] Only one SFM necessary.

Martin Skutella

Opening the Blackbox of SFM Algorithms

Let $g : 2^U \to \mathbb{R}$ submodular. For $y \in \mathbb{R}^U$, $X \subseteq U$ let $y(X) = \sum_{r \in X} y_r$. Definition. (Base Polytope) $\mathcal{B}(g) := \{y \in \mathbb{R}^U \mid y(X) \le g(X) \text{ for all } X \subseteq U, y(U) = g(U)\}$

Theorem. [Edmonds 1970] $\min\{g(X) \mid X \subseteq U\} = \max\{y^{-}(U) \mid y \in \mathcal{B}(g)\},$ where $y^{-}(U) :=$ sum of all negative coordinates of vector y.

Idea of SFM algorithms:

Output: $y^* = \operatorname{argmax} \{y^-(U) \mid y \in \mathcal{B}(g)\}$ as convex combination of verticesMartin SkutellaFlows Over Time and Submodular Function Minimization20 / 26

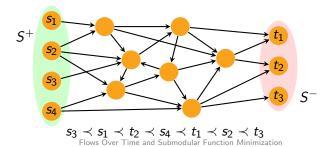
Vertices of the Base Polytope $\mathcal{B}(g)$

Theorem. [Edmonds 1970] Vertices of $\mathcal{B}(g) \leftrightarrow$ linear orders \prec of U, i.e., each vertex y is greedy solution $y = y^{\prec}$ for some order $r_1 \prec \cdots \prec r_k$:

$$y_{r_i}^{\prec} := g(\{r_1, \dots, r_i\}) - g(\{r_1, \dots, r_{i-1}\}), \text{ for } i = 1, \dots, k.$$
 (*)

Apply to transshipment function $g = o: 2^{S^+ \cup S^-} \to \mathbb{R}$

Definition. A lex-max flow over time f^{\prec} w.r.t. order \prec on $S^+ \cup S^-$ lexicographically maximizes flow leaving each terminal in given order.



Vertices of the Base Polytope $\mathcal{B}(g)$

Theorem. [Edmonds 1970] Vertices of $\mathcal{B}(g) \iff$ linear orders \prec of U, i.e., each vertex y is greedy solution $y = y^{\prec}$ for some order $r_1 \prec \cdots \prec r_k$:

$$y_{r_i}^{\prec} := g(\{r_1, \dots, r_i\}) - g(\{r_1, \dots, r_{i-1}\}), \text{ for } i = 1, \dots, k.$$
 (*)

Apply to transshipment function $g = o: 2^{S^+ \cup S^-} \to \mathbb{R}$

Definition. A lex-max flow over time f^{\prec} w.r.t. order \prec on $S^+ \cup S^-$ lexicographically maximizes flow leaving each terminal in given order.

Example. $u \equiv \tau \equiv 1, T = 4$

 $t \prec s_1 \prec s_2$: no flow $t \prec s_2 \prec s_1$: no flow $s_1 \prec s_2 \prec t$: two units of flow from s_1 to t $s_1 \prec t \prec s_2$: two units of flow from s_1 to t $s_2 \prec s_1 \prec t$: two units of flow from s_2 to t $s_2 \prec t \prec s_1$: two units of flow from s_2 to t

Martin Skutella

Flows Over Time and Submodular Function Minimization

Vertices of the Base Polytope $\mathcal{B}(g)$

Theorem. [Edmonds 1970] Vertices of $\mathcal{B}(g) \leftrightarrow$ linear orders \prec of U, i.e., each vertex y is greedy solution $y = y^{\prec}$ for some order $r_1 \prec \cdots \prec r_k$:

$$y_{r_i}^{\prec} := g(\{r_1, \dots, r_i\}) - g(\{r_1, \dots, r_{i-1}\}), \text{ for } i = 1, \dots, k.$$
 (*)

Apply to transshipment function $g = o: 2^{S^+ \cup S^-} \to \mathbb{R}$

Definition. A lex-max flow over time f^{\prec} w.r.t. order \prec on $S^+ \cup S^-$ lexicographically maximizes flow leaving each terminal in given order.

Theorem. [Hoppe, Tardos 1995] Strongly polynomial algorithm computing lex-max flow over time exists.

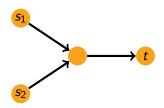
Observation.

If $S^+ \cup S^- = \{r_1, \ldots, r_k\}$ and $r_1 \prec \cdots \prec r_k$, flow leaving r_i is given by (*),

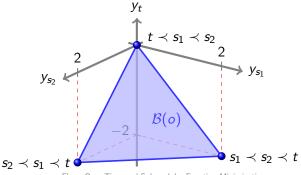
i.e., vertex y^{\prec} of polytope $\mathcal{B}(o)$ corresponds to lex-max flow over time f^{\prec} !

Example: Base Polytope $\mathcal{B}(o)$ and its Vertices

Example. $u \equiv \tau \equiv 1, T = 4$



 $t \prec s_1 \prec s_2$: no flow $t \prec s_2 \prec s_1$: no flow $s_1 \prec s_2 \prec t$: two units of flow from s_1 to t $s_1 \prec t \prec s_2$: two units of flow from s_1 to t $s_2 \prec s_1 \prec t$: two units of flow from s_2 to t $s_2 \prec t \prec s_1$: two units of flow from s_2 to t



Martin Skutella

Flows Over Time and Submodular Function Minimization

Computing a Transshipment Over Time via One SFM

Remember: There is transshipment satisfying demands $v \in \mathbb{R}^{S^+ \cup S^-}$

$$\begin{array}{ll} \iff & \min\{o(X) - v(X) \mid X \subseteq S^+ \cup S^-\} \ge 0 & [\text{Klinz 1994}] \\ \Leftrightarrow & \max\{y^-(S^+ \cup S^-) \mid y \in \mathcal{B}(o - v)\} \ge 0 & [\text{Edmonds 1970}] \\ \Leftrightarrow & \mathbf{0} \in \mathcal{B}(o - v) \end{array}$$

For o - v, SFM algorithm finds representation of **0** as convex combination of vertices of $\mathcal{B}(o - v)$.

Observation. $\mathcal{B}(o) = \mathcal{B}(o - v) + v$

 \implies representation of v as convex combination of vertices y^{\prec} of $\mathcal{B}(o)$:

$$v = \sum_{\prec} \lambda^{\prec} y^{\prec} \tag{**}$$

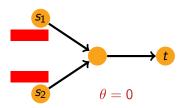
Summary.

Convex combination $\sum_{\prec} \lambda^{\prec} f^{\prec}$ of lex-max flows over time f^{\prec} satisfies given demands v by (**) and thus solves transshipment over time problem.

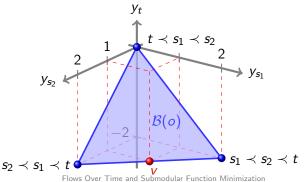
Martin Skutella

Flows Over Time and Submodular Function Minimization

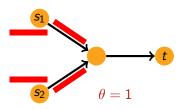
Example. $u \equiv \tau \equiv 1, T = 4$



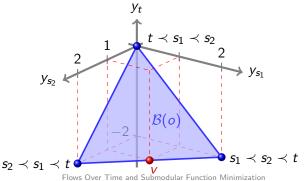
 $t \prec s_1 \prec s_2$: no flow $t \prec s_2 \prec s_1$: no flow $s_1 \prec s_2 \prec t$: two units of flow from s_1 to t $s_1 \prec t \prec s_2$: two units of flow from s_1 to t $s_2 \prec s_1 \prec t$: two units of flow from s_2 to t $s_2 \prec t \prec s_1$: two units of flow from s_2 to t



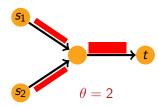
Example. $u \equiv \tau \equiv 1, T = 4$



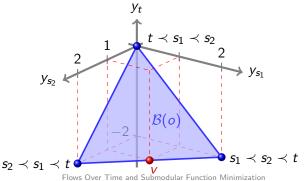
 $t \prec s_1 \prec s_2$: no flow $t \prec s_2 \prec s_1$: no flow $s_1 \prec s_2 \prec t$: two units of flow from s_1 to t $s_1 \prec t \prec s_2$: two units of flow from s_1 to t $s_2 \prec s_1 \prec t$: two units of flow from s_2 to t $s_2 \prec t \prec s_1$: two units of flow from s_2 to t



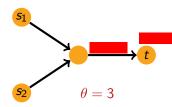
Example. $u \equiv \tau \equiv 1, T = 4$



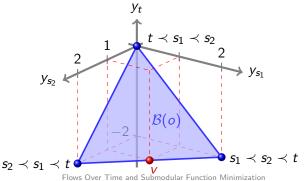
 $t \prec s_1 \prec s_2$: no flow $t \prec s_2 \prec s_1$: no flow $s_1 \prec s_2 \prec t$: two units of flow from s_1 to t $s_1 \prec t \prec s_2$: two units of flow from s_1 to t $s_2 \prec s_1 \prec t$: two units of flow from s_2 to t $s_2 \prec t \prec s_1$: two units of flow from s_2 to t



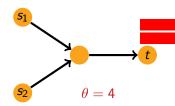
Example. $u \equiv \tau \equiv 1, T = 4$



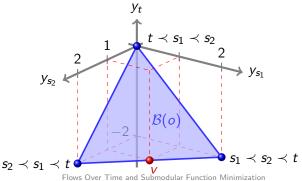
 $t \prec s_1 \prec s_2$: no flow $t \prec s_2 \prec s_1$: no flow $s_1 \prec s_2 \prec t$: two units of flow from s_1 to t $s_1 \prec t \prec s_2$: two units of flow from s_1 to t $s_2 \prec s_1 \prec t$: two units of flow from s_2 to t $s_2 \prec t \prec s_1$: two units of flow from s_2 to t



Example. $u \equiv \tau \equiv 1, T = 4$

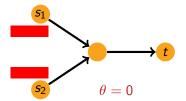


 $t \prec s_1 \prec s_2$: no flow $t \prec s_2 \prec s_1$: no flow $s_1 \prec s_2 \prec t$: two units of flow from s_1 to t $s_1 \prec t \prec s_2$: two units of flow from s_1 to t $s_2 \prec s_1 \prec t$: two units of flow from s_2 to t $s_2 \prec t \prec s_1$: two units of flow from s_2 to t



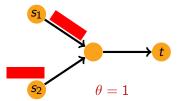
- ▶ Flows over time are considerably more complex than static flows.
- ► Transshipments over time rely on submodular function minimization

- ▶ Make use of particular network structure behind submodular function
- Compute integral transshipment over time (like Hoppe & Tardos)



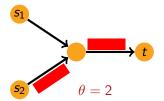
- ▶ Flows over time are considerably more complex than static flows.
- ► Transshipments over time rely on submodular function minimization

- ▶ Make use of particular network structure behind submodular function
- Compute integral transshipment over time (like Hoppe & Tardos)



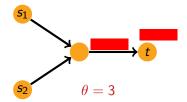
- ▶ Flows over time are considerably more complex than static flows.
- ► Transshipments over time rely on submodular function minimization

- ▶ Make use of particular network structure behind submodular function
- Compute integral transshipment over time (like Hoppe & Tardos)



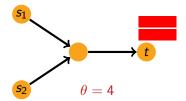
- ▶ Flows over time are considerably more complex than static flows.
- ► Transshipments over time rely on submodular function minimization

- ▶ Make use of particular network structure behind submodular function
- Compute integral transshipment over time (like Hoppe & Tardos)



- ▶ Flows over time are considerably more complex than static flows.
- ► Transshipments over time rely on submodular function minimization

- ▶ Make use of particular network structure behind submodular function
- Compute integral transshipment over time (like Hoppe & Tardos)



Join the BMS family

GET YOUR MATH PHD IN BERLIN

- → Fast track program: 4–5 years from Bachelor's degree to PhD
- → Broad range of courses
- → Pure and applied mathematics
- → Course program in English
- → Scholarships available

Freie Universität

- → Funding for conferences and summer schools
- → Mentoring program and soft-skills training
- → Funding for students with children

www.math-berlin.de

phone: +49 30 314 78651 - e-mail: office@math-berlin.de

Deadline for Scholarships: 1 December