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Flows Over Time: Intuition

s t

network of pipelines

s t

graph / network

flow ←→ fluid

arcs ←→ pipes

transit time ←→ length of pipe

capacity ←→ width of pipe
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Example of an s-t-Flow Over Time
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Flows Over Time: Definition

Given:

I digraph D = (V ,A)

I capacities ua, a ∈ A

I transit times τa, a ∈ A

I time horizon T
v w

time:

τvw

θ = 0

θ = 15

uvw

Definition.

A flow over time with time horizon T is a family of functions

fa : {1, . . . ,T} → R≥0, for a ∈ A,

subject to

I fa(θ) ≤ ua for all a, θ (capacity constraints),

I flow conservation at nodes.
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Given:

I digraph D = (V ,A)

I capacities ua, a ∈ A

I transit times τa, a ∈ A

I time horizon T
v w

time:

τvw

θ = 3

θ = 15

uvw

Definition.

A flow over time with time horizon T is a family of functions

fa : {1, . . . ,T} → R≥0, for a ∈ A,

subject to

I fa(θ) ≤ ua for all a, θ (capacity constraints),

I flow conservation at nodes.
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Given:

I digraph D = (V ,A)
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I time horizon T
v w

time:

τvw

θ = 5

θ = 15

uvw
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A flow over time with time horizon T is a family of functions

fa : {1, . . . ,T} → R≥0, for a ∈ A,
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time:
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θ = 15

uvw
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Given:

I digraph D = (V ,A)

I capacities ua, a ∈ A

I transit times τa, a ∈ A

I time horizon T
v w

time:

τvw

θ = 9

θ = 15

uvw

Definition.

A flow over time with time horizon T is a family of functions

fa : {1, . . . ,T} → R≥0, for a ∈ A,

subject to

I fa(θ) ≤ ua for all a, θ (capacity constraints),
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Given:

I digraph D = (V ,A)

I capacities ua, a ∈ A

I transit times τa, a ∈ A

I time horizon T
v w

time:

τvw

θ = 10

θ = 15

uvw

Definition.

A flow over time with time horizon T is a family of functions

fa : {1, . . . ,T} → R≥0, for a ∈ A,

subject to

I fa(θ) ≤ ua for all a, θ (capacity constraints),

I flow conservation at nodes.

Martin Skutella Flows Over Time and Submodular Function Minimization 5 / 26



Flows Over Time: Definition

Given:

I digraph D = (V ,A)
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I transit times τa, a ∈ A

I time horizon T
v w

time:

τvw

θ = 11

θ = 15

uvw

Definition.

A flow over time with time horizon T is a family of functions

fa : {1, . . . ,T} → R≥0, for a ∈ A,

subject to

I fa(θ) ≤ ua for all a, θ (capacity constraints),

I flow conservation at nodes.
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Outline

1 Short introduction to network flows over time
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3 Transshipment over time and submodular functions [Schlöter, Sk. 2017]
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The Maximum s-t-Flow Over Time Problem

Ford & Fulkerson (1958/62) introduce flows over time (“dynamic flows”).

Given: D = (V ,A), s, t ∈ V , capacity ua, transit time τa, time horizon T

s t

0 , 1

2 , 1

1 , 1

2 , 1

0 , 1

Aim: send max amount of flow from source s to sink t within time T

Martin Skutella Flows Over Time and Submodular Function Minimization 7 / 26



The Maximum s-t-Flow Over Time Problem

Ford & Fulkerson (1958/62) introduce flows over time (“dynamic flows”).

Given: D = (V ,A), s, t ∈ V , capacity ua, transit time τa, time horizon T

s t

0 , 1

2 , 1

1 , 1

2 , 1

0 , 1

Aim: send max amount of flow from source s to sink t within time T

Martin Skutella Flows Over Time and Submodular Function Minimization 7 / 26



Time Expanded Networks

Observation. (Ford & Fulkerson 1958/62)

Flows over time correspond to static flows in time-expanded networks.

Example:

θ = 0

θ = 1

θ = 2

θ = 3

0 1
0

2

2
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Pros and Cons of Time Expanded Networks

Pros:

I Many flow over time problems can be solved by static flow algorithms
in time-expanded networks.

I Thus, the entire algorithmic toolbox developed for static flows is also
available for flows over time.

Cons:

I In practical applications: Size of the time-expanded network leads to
huge memory requirement for computations (depending on T ).

I In theory: Only pseudo-polynomial algorithms, since the size of the
time-expanded network is pseudo-polynomial in the input size.

Fleischer & Sk. (2007), . . . :
Small ‘condensed’ time-expanded networks of provable quality.
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Computing Maximum s-t-Flows Over Time Efficiently

Algorithm. [Ford, Fulkerson 1958]

1 compute static s-t-flow x in G

maximizing T |x | −
∑
a∈A

τa xa

2 decompose x into flows xP on s-t-paths P ∈ P such that

xa =
∑
P∈P
a∈P

xP for all a ∈ A

3 send flow at rate xP into paths P ∈ P, as long as there is enough
time left to arrive at the sink before time T
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Maximum s-t-Flow Over Time

s t

s t
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Proof of Optimality

Theorem. [Ford, Fulkerson 1958]

1 The resulting s-t-flow over time f has maximum value.

2 The running time of the algorithm is dominated by the (static)
min-cost flow computation in step 1.

Proof: f has flow value

|f | =
∑
P∈P

(T − τP) xP = T |x | −
∑
a∈A

τa xa .

Notice that x maximizes the right hand side (step 1). . .
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Proof (cont.): s-t-Cuts Over Time

Definition.

An s-t-cut over time is given by threshold values αv ∈ [0,∞) for all v ∈ V
with αs = 0 and αt ≥ T . A node v ∈ V belongs to the right hand side
until time αv , and afterwards to the left hand side of the cut.

s
t

0 = θ1 < θ2 < θ3 < θ4 < θ5 < T
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Proof (cont.): s-t-Cuts Over Time

Definition.

An s-t-cut over time is given by threshold values αv ∈ [0,∞) for all v ∈ V
with αs = 0 and αt ≥ T . A node v ∈ V belongs to the right hand side
until time αv , and afterwards to the left hand side of the cut.

Observation. Flow can cross the cut from left to right on arc a = (v ,w)
during time interval [αv , αw − τa).

vαv w αw
τa

Definition and Lemma.

The capacity of an s-t-cut over time is∑
a=(v ,w)∈A

ua max{0, αw − τa − αv} .

This is an upper bound on the maximum flow over time value.
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Max Flow Over Time = Min Cut Over Time

The value of the s-t-flow over time computed above equals

max T · |x | −
∑
a∈A

τa · xa∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 ∀v

xa ≤ ua ∀a
xa ≥ 0 ∀a

= min
∑
a∈A

ua · ya

αt − αs ≥ T

ya ≥ αw − τa − αv ∀a = (v ,w)

ya ≥ 0 ∀a

Notice that ya = max{0, αw − τa − αv} in an optimal dual solution and,
w.l.o.g., αs = 0, αt ≥ T .

Theorem. [Ford, Fulkerson 1958]

Maximum flow over time value equals minimum cut over time capacity.
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The Complexity Landscape of Flows Over Time

s-t-flow
trans-

shipment min-cost
multi-

commodity

static
flow

polynomial polynomial polyn. (LP)

flow
over
time

polynomial
static min-

cost flow [1]

polynomial
minimize

submodular
functions

[2,3]

NP-hard [4] NP-hard [5]
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Submodular Function Minimization (SFM)

Definition. For a finite set U, function g : 2U → R is submodular if

g(X ) + g(Y ) ≥ g(X ∪ Y ) + g(X ∩ Y ) for all X ,Y ⊆ U.

Example. Cut function of network D = (V ,A) with capacities u : A→ R:

X 7→ u
(
δ+(X )

)
for X ⊆ V

X

Y

δ+(X )

δ+(Y )

Submodular function minimization (SFM).

min g(X ) s.t. X ⊆ U

Theorem. SFM can be solved in strongly polynomial time.

I ellipsoid method [Grötschel, Lovàsz, Schrijver 1982,1988]

I combinatorial algorithm [Schrijver 2000, Iwata et al. 2000, Orlin 2009]

I currently fastest [Lee, Sidford, Wong 2015]
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Transshipment Over Time Problem

Given: D = (V ,A), ua, τa for a ∈ A, sources/sinks S+,S− ⊂ V with
supplies/demands v : S+ ∪ S− → R, time horizon T .

Task: Find flow over time f satisfying supplies/demands within time T .

S+

S−

S+ ∩ X

S− \ X

s

t

s1

s2

s3

s4

t1

t2

t3

v(si ) > 0

v(ti ) < 0

v(S+ ∪ S−) = v(s1) + · · ·+ v(s4) + v(t1) + · · ·+ v(t3) = 0

Definition. Let o : 2S
+∪S− → R be defined as follows: for X ⊆ S+ ∪ S−

o(X ) := value of max flow over time from S+ ∩ X to S− \ X

Lemma. [Klinz 1994] The problem is feasible if and only if

o(X ) ≥ v(X ) for all X ⊆ S+ ∪ S−.
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Transshipments Over Time via SFM

Definition. Let o : 2S
+∪S− → R be defined as follows: for X ⊆ S+ ∪ S−

o(X ) := value of max flow over time from S+ ∩ X to S− \ X

Lemma. [Klinz 1994] The problem is feasible if and only if

o(X ) ≥ v(X ) for all X ⊆ S+ ∪ S−.

Example. capacities u ≡ 1, transit times τ ≡ 1, T = 4

s1

s2

t

v(s1) = 1

v(s2) = 1

v(t) = −2θ = 0

0 = o
(
∅
)

= o
(
{t, . . . }

)
2 = o

(
{s1}

)

= o
(
{s2}

)
= o

(
{s1, s2}

)

Observations.
I X 7→ o(X ) is submodular (cut function in time-expanded network)

I also X 7→ o(X )− v(X ) is submodular (as v is modular)

=⇒ Check existence of feasible transshipment over time via one SFM.

Theorem. [Hoppe, Tardos 1995]
Compute transshipment over time via O(|S+ ∪ S−|) calls to SFM oracle.

Theorem. [Schlöter, Sk. 2017] Only one SFM necessary.
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Theorem. [Schlöter, Sk. 2017] Only one SFM necessary.
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Opening the Blackbox of SFM Algorithms

Let g : 2U → R submodular. For y ∈ RU , X ⊆ U let y(X ) =
∑

r∈X yr .

Definition. (Base Polytope)

B(g) :=
{
y ∈ RU | y(X ) ≤ g(X ) for all X ⊆ U, y(U) = g(U)

}
Theorem. [Edmonds 1970]

min
{
g(X ) | X ⊆ U

}
= max

{
y−(U) | y ∈ B(g)

}
,

where y−(U) := sum of all negative coordinates of vector y .

Idea of SFM algorithms:

Output: y∗ = argmax
{
y−(U) | y ∈ B(g)

}
as convex combination of vertices
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Vertices of the Base Polytope B(g)

Idea of SFM algorithms:

Output: y∗ = argmax
{
y−(U) | y ∈ B(g)

}
as convex combination of vertices

Theorem. [Edmonds 1970] Vertices of B(g) ←→ linear orders ≺ of U,

i.e., each vertex y is greedy solution y = y≺ for some order r1 ≺ · · · ≺ rk :

y≺ri := g
(
{r1, . . . , ri}

)
− g

(
{r1, . . . , ri−1}

)
, for i = 1, . . . , k. (*)

Apply to transshipment function g = o : 2S
+∪S− → R

Definition. A lex-max flow over time f ≺ w.r.t. order ≺ on S+ ∪ S−

lexicographically maximizes flow leaving each terminal in given order.

S+

S−

s1

s2

s3

s4

t1

t2

t3

s3 ≺ s1 ≺ t2 ≺ s4 ≺ t1 ≺ s2 ≺ t3

Theorem. [Hoppe, Tardos 1995]
Strongly polynomial algorithm computing lex-max flow over time exists.

Observation.
If S+ ∪ S− = {r1, . . . , rk} and r1 ≺ · · · ≺ rk , flow leaving ri is given by (*),

i.e., vertex y≺ of polytope B(o) corresponds to lex-max flow over time f ≺!
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Example: Base Polytope B(o) and its Vertices

Example. u ≡ τ ≡ 1, T = 4

s1

s2

t

t ≺ s1 ≺ s2: no flow
t ≺ s2 ≺ s1: no flow
s1 ≺ s2 ≺ t: two units of flow from s1 to t
s1 ≺ t ≺ s2: two units of flow from s1 to t
s2 ≺ s1 ≺ t: two units of flow from s2 to t
s2 ≺ t ≺ s1: two units of flow from s2 to t

ys1ys2

yt

22

−2
B(o)

t ≺ s1 ≺ s2

s1 ≺ s2 ≺ ts2 ≺ s1 ≺ t
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Computing a Transshipment Over Time via One SFM

Remember: There is transshipment satisfying demands v ∈ RS+∪S−

⇐⇒ min
{
o(X )− v(X ) | X ⊆ S+ ∪ S−

}
≥ 0 [Klinz 1994]

⇐⇒ max
{
y−(S+ ∪ S−) | y ∈ B(o − v)

}
≥ 0 [Edmonds 1970]

⇐⇒ 0 ∈ B(o − v)

For o − v , SFM algorithm finds representation of 0 as convex combination
of vertices of B(o − v).

Observation. B(o) = B(o − v) + v

=⇒ representation of v as convex combination of vertices y≺ of B(o):

v =
∑
≺
λ≺y≺ (**)

Summary.
Convex combination

∑
≺ λ
≺f ≺ of lex-max flows over time f ≺ satisfies

given demands v by (**) and thus solves transshipment over time problem.
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Example: Transshipment Over Time as Convex Combin.

Example. u ≡ τ ≡ 1, T = 4

s1

s2

t

θ = 0

t ≺ s1 ≺ s2: no flow
t ≺ s2 ≺ s1: no flow
s1 ≺ s2 ≺ t: two units of flow from s1 to t
s1 ≺ t ≺ s2: two units of flow from s1 to t
s2 ≺ s1 ≺ t: two units of flow from s2 to t
s2 ≺ t ≺ s1: two units of flow from s2 to t

ys1ys2

yt

22
1

−2
B(o)

t ≺ s1 ≺ s2

s1 ≺ s2 ≺ ts2 ≺ s1 ≺ t v
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Example: Transshipment Over Time as Convex Combin.
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Conclusion

I Flows over time are considerably more complex than static flows.

I Transshipments over time rely on submodular function minimization

Open problems

I Make use of particular network structure behind submodular function

I Compute integral transshipment over time (like Hoppe & Tardos)

s1

s2

t

θ = 0
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