Domination in Some Subclasses of Bipartite Graphs

Arti Pandey, B.S. Panda

Department of Mathematics Indian Institute of Technology, Delhi

February 10, 2015

Outline

- 1 Introduction to Domination Concepts
- 2 Complexity Status
- Our Results
 - Polynomial time algorithm for Circular-convex bipartite graphs
 - Polynomial time algorithm for Triad-convex bipartite graphs
 - Hardness results for Star-convex bipartite graphs
- Future Aspects

Domination

- The concept of domination was first introduced by **Berge** and **Ore** in 1962.
- A vertex v is said to **dominate** a vertex w in G if $v \in N_G[w]$.
- A set $D \subseteq V$ is called a **dominating set** of the graph G = (V, E) if every vertex of G is dominated by some vertex in D.
- The domination number of G, denoted by γ_G is the cardinality of a minimum dominating set of G.

Domination

- The concept of domination was first introduced by **Berge** and **Ore** in 1962.
- A vertex v is said to **dominate** a vertex w in G if $v \in N_G[w]$.
- A set $D \subseteq V$ is called a **dominating set** of the graph G = (V, E) if every vertex of G is dominated by some vertex in D.
- The domination number of G, denoted by γ_G is the cardinality of a minimum dominating set of G.

Problem Statement

Minimum Domination Problem (MDP)

Instance: A graph G = (V, E).

Solution: A dominating set D of G.

Measure: Cardinality of the D.

Domination Decision Problem (DDP)

Instance: A graph G = (V, E) and a positive integer $k \leq |V|$.

Question: Does there exist a dominating set D of G such that $|D| \leq k$?

Two Books on Domination

Hierarchy Relationship Between Some Graph Classes

Some References for Graph Classes

- 1 Liang, Y.D., Blum, N.: Circular convex bipartite graphs: maximum matching and hamiltonian circuits. Inform. Process. Lett. 56 (1995) 215-219.
- Liu, T., Lu, M., Lu, Z., Xu, K.: Circular convex bipartite graphs: Feedback vertex sets. Theoret. Comput. Sci. DOI: 10.1016/j.tcs.2014.05.001 (2014).
- Liu, W.J.T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite graphs. Theoret. Comput. Sci. 507 (2013) 41-51.
- Lu, M., Liu, T., Xu, K.: Independent domination: reductions from circular- and triad-convex bipartite graphs to convex bipartite graphs. in: Proc. of FAW-AAIM (2013) 142-152.
- Lu, Z., Liu, T., Xu, K.: Tractable connected domination for restricted bipartite graphs. in: Proc. of COCOON (2013) 721-728.
- Song, Y., Liu, T., Xu, K.: Independent domination on tree-convex bipartite graphs. in: Proc. of FAW-AAIM (2012) 129-138.

Let D^* be a minimum dominating set of a circular convex bipartite graph G=(X,Y,E). Then the following two cases arise:

- $D^* \cap X = \emptyset$
- $D^* \cap X \neq \emptyset$
 - $x_i \in D^* \cap X$ for some $i, 1 \le i \le n$

Let D^* be a minimum dominating set of a circular convex bipartite graph G=(X,Y,E). Then the following two cases arise:

- $D^* \cap X = \emptyset$ $D^* = Y$
- $D^* \cap X \neq \emptyset$

 $x_i \in D^* \cap X$ for some $i, 1 \le i \le n$

Let D^* be a minimum dominating set of a circular convex bipartite graph G=(X,Y,E). Then the following two cases arise:

- $D^* \cap X = \emptyset$ $D^* = Y$
- $D^* \cap X \neq \emptyset$ $x_i \in D^* \cap X$ for some $i, 1 \leq i \leq n$

First Approach

- Define $G' = G \setminus N_G[x_i]$.
- Find minimum dominating set D' of G'.
- Output $D' \cup \{x_i\}$ as a dominating set of G.

An Example for Our Approach

- Define $G' = G \setminus N_G[x_i]$.
- Find minimum dominating set D' of G'.
- Output $D' \cup \{x_i\}$ as a dominating set of G.

An Example for Our Approach

- Define $G' = G \setminus N_G[x_i]$.
- Find minimum dominating set D' of G'.
- Output $D' \cup \{x_i\}$ as a dominating set of G.

Lemma

Let G=(X,Y,E) be a circular-convex bipartite graph, and D^* be a minimum dominating set of G. Then, for a vertex $x_i \in D^* \cap X$, $|N_G(x_i) \cap D^*| \leq 2$.

Lemma

Let G = (X, Y, E) be a circular-convex bipartite graph, and D^* be a minimum dominating set of G. Then, for a vertex $x_i \in D^* \cap X$, $|N_G(x_i) \cap D^*| \le 2.$

Lemma

Let G = (X, Y, E) be a circular-convex bipartite graph, and D^* be a minimum dominating set of G. Then, for a vertex $x_i \in D^* \cap X$, $|N_G(x_i) \cap D^*| \le 2.$

Lemma

Let G=(X,Y,E) be a circular-convex bipartite graph, and D^* be a minimum dominating set of G. Then, for a vertex $x_i \in D^* \cap X$, $|N_G(x_i) \cap D^*| \leq 2$.

Lemma

Let G=(X,Y,E) be a circular-convex bipartite graph, and D^* be a minimum dominating set of G. Then, for a vertex $x_i \in D^* \cap X$, $|N_G(x_i) \cap D^*| \leq 2$.

Lemma

Let G=(X,Y,E) be a circular-convex bipartite graph, and D^* be a minimum dominating set of G. Then, for a vertex $x_i \in D^* \cap X$, $|N_G(x_i) \cap D^*| \leq 2$.

Let D^* be a minimum dominating set of G.

- If D^* does not contain any vertex from X, then $D^* = Y$.
- If D^* contains at least one vertex say x_i from X, then we have the following cases:
 - 1. None of the neighbor of x_i belongs to D^* .
 - 2. Exactly one neighbor of x_i belongs to D^* .
 - 3. Exactly two neighbors of x_i belong to D^* .

Lemma

If D is a minimum dominating set of $G^{y_j}_{x_i}$ containing all the support vertices of $G^{y_j}_{x_i}$, that is, $\{x_i', x_i'', y_j', y_j''\} \subseteq D$, then $D^{y_j}_{x_i} = (D \setminus \{x_i', x_i'', y_i', y_i''\}) \cup \{x_i, y_j\}$ is a minimum dominating set of G.

Case 3: Exactly two neighbors y_j, y_k of x_i belongs to D^*

Case 3: Exactly two neighbors y_j, y_k of x_i belongs to D^*

Case 3: Exactly two neighbors y_j, y_k of x_i belongs to

Case 3: Exactly two neighbors y_j, y_k of x_i belongs to D^*

Case 3: Exactly two neighbors y_j, y_k of x_i belongs to D^*

Lemma

If D is a minimum dominating set of $G^{y_j,y_k}_{x_i}$ containing all the support vertices of $G^{y_j,y_k}_{x_i}$, that is, $\{x_i',x_i'',y_j,y_k\}\subseteq D$, then $D^{y_j,y_k}_{x_i}=(D\setminus\{x_i',x_i''\})\cup\{x_i\}$ is a minimum dominating set of G.

Theorem

A minimum dominating set of circular-convex bipartite graph can be computed in $O(n^5)$ time.

h

Minimum Domination in Triad-Convex Bipartite Graph

Let G = (X, Y, E) be a triad-convex bipartite graph.

For each $y \in Y$, $T[N_G(y)]$ is a subtree of T.

ph (

Minimum Domination in Triad-Convex Bipartite Graph

Let G = (X, Y, E) be a triad-convex bipartite graph.

For each $y \in Y$, $T[N_G(y)]$ is a subtree of T.

We write $X=\{x_0\}\cup X_1\cup X_2\cup X_3$, where $X_i=\{x_{i,1},x_{i,2},\ldots,x_{i,n_i}\}$ for each i, $1\leq i\leq 3$.

 $3, n_3$

ph (

Minimum Domination in Triad-Convex Bipartite Graph

Let G = (X, Y, E) be a triad-convex bipartite graph.

Lemma

 \exists a minimum dominating set D of G such that $|N_G(x_0) \cap D| \leq 3.$

Sketch of the Proof:

Let
$$Y^0=N_G(x_0)$$
 and

$$X^0 = N_G(Y_0) = N_G(N_G(x_0)).$$

Let
$$i$$
 be the maximum index such that

$$j,k \in \mathbb{N}_0$$
. Similarly, j,k be the maximum indices such that $x_{2,j},x_{3,k} \in X_0$.

Case 2: $x_0 \in D$ and $1 \le |N_G(x_0) \cap D| \le 3$

Case 2: $x_0 \in D$ and $1 \le |N_G(x_0) \cap D| \le 3$

Case 2: $x_0 \in D$ and $1 \le |N_G(x_0) \cap D| \le 3$

Case 2: $x_0 \in D$ and $1 \leq |N_G(x_0) \cap D| \leq 3$

Case 2: $x_0 \in D$ and $1 \leq |N_G(x_0) \cap D| \leq 3$

$Case3: x_0 \notin D \text{ and } 1 \leq |N_G(x_0) \cap D| \leq 3$

Theorem

A minimum dominating set of circular-convex bipartite graph can be computed in $O(n^8)$ time.

Definition

A bipartite graph G=(X,Y,E) is called a tree-convex bipartite graph, if a tree $T=(X,E_X)$ can be defined on the vertices of X, such that for every vertex y in Y, the neighborhood of y induces a subtree of T.

Definition

For T a star, G is called star-convex bipartite graph.

Definition

A bipartite graph G=(X,Y,E) is called a tree-convex bipartite graph, if a tree $T=(X,E_X)$ can be defined on the vertices of X, such that for every vertex y in Y, the neighborhood of y induces a subtree of T.

Definition

For T a star, G is called star-convex bipartite graph.

Star-convex Bipartite Graphs

Lemma

A bipartite graph G=(X,Y,E) is a star-convex bipartite graph if and only if there exists a vertex x in X such that every vertex y in Y is either a pendant vertex or is adjacent to x.

Set Cover Problem

- Let S be any non-empty set and F be a family of subsets of S. For the set system (S, F), a set $C \subseteq F$ is called a **cover** of S, if every element of S belongs to at least one element of C.
- The Min Set Cover problem is to find a minimum cardinality cover of S for a given set system (S, F).
- For a given positive integer k and a set system (S, F), the **Decide Set Cover problem** is to decide whether S has a cover of cardinality at most k.

Theorem

The Decide Set Cover problem is NP-complete.

Theorem

The MIN SET COVER problem for input instance (S,F) does not admit a $(1-\epsilon)\ln|S|$ -approximation algorithm for any $\epsilon>0$ unless $NP\subseteq DTIME(|S|^{O(\log\log|S|)})$. Furthermore, this inapproximability result holds for the case when the size of the input collection F is no more than the size of the set S.

Reduction from Set Cover to Dominating Set

- Given a set system (S,F), where $S=\{S_1,S_2,\ldots,S_p\}$ and $F=\{C_1,C_2,\ldots,C_q\}$, $q\leq p$, we construct the star-convex bipartite graph G=(X,Y,E) as follows.
 - For each element S_i in the set S, add a vertex x_i in X.
 - ② For each set C_j in the collection F, add a vertex c_j in Y.
 - **3** Add a vertex x_{p+1} in X, a vertex y_{q+1} in Y, and set of edges $\{x_{p+1}y_j \mid 1 \leq j \leq q+1\}$ in E.
 - **1** If an element S_i belongs to set C_j , then add an edge between vertices x_i and c_j in graph G.

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$F = \{C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{4, 5\}, C_4 = \{4, 5, 6\}, C_5 = \{3, 5, 6\}\}$$

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$F = \{C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{4, 5\}, C_4 = \{4, 5, 6\},$$

$$C_5 = \{3, 5, 6\}\}$$

$$x_1 \bullet \qquad \qquad \bullet y_1$$
 $x_2 \bullet \qquad \qquad \bullet y_2$
 $x_3 \bullet \qquad \qquad \bullet y_3$
 $x_4 \bullet \qquad \qquad \bullet y_4$
 $x_5 \bullet \qquad \qquad \bullet y_5$

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$F = \{C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{4, 5\}, C_4 = \{4, 5, 6\}, C_5 = \{3, 5, 6\}\}$$

$$x_{1} \bullet \qquad \qquad \bullet y_{1}$$
 $x_{2} \bullet \qquad \qquad \bullet y_{2}$
 $x_{3} \bullet \qquad \qquad \bullet y_{3}$
 $x_{4} \bullet \qquad \qquad \bullet y_{4}$
 $x_{5} \bullet \qquad \qquad \bullet y_{5}$
 $x_{7} \bullet \qquad \bullet y_{6}$

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$F = \{C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{4, 5\}, C_4 = \{4, 5, 6\}, C_5 = \{3, 5, 6\}\}$$

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$F = \{C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{4, 5\}, C_4 = \{4, 5, 6\}, C_5 = \{3, 5, 6\}\}$$

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$F = \{C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{4, 5\}, C_4 = \{4, 5, 6\}, C_5 = \{3, 5, 6\}\}$$

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$F = \{C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{4, 5\}, C_4 = \{4, 5, 6\}, C_5 = \{3, 5, 6\}\}$$

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$F = \{C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{4, 5\}, C_4 = \{4, 5, 6\}, C_5 = \{3, 5, 6\}\}$$

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$F = \{C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{4, 5\}, C_4 = \{4, 5, 6\}, C_5 = \{3, 5, 6\}\}$$

Claim

S has a cover of cardinality k if and only if G has a dominating set of cardinality k+1.

Star-convex Bipartite Graphs: Results

Theorem

The Domination Decision problem is NP-complete for star-convex bipartite graphs.

Star-convex Bipartite Graphs: Results

Theorem

The DOMINATION DECISION problem is NP-complete for star-convex bipartite graphs.

Theorem

The MINIMUM DOMINATION problem for a star-convex bipartite graph G with n vertices does not admit a $(1 - \epsilon) \ln n$ -approximation algorithm for any $\epsilon > 0$ unless $NP \subseteq DTIME(n^{O(\log \log n)})$.

Theorem

The MINIMUM DOMINATION problem is linear-time solvable for bounded degree star-convex bipartite graphs.

Star-convex Bipartite Graphs: Results

Theorem

The DOMINATION DECISION problem is NP-complete for star-convex bipartite graphs.

Theorem

The MINIMUM DOMINATION problem for a star-convex bipartite graph G with n vertices does not admit a $(1-\epsilon) \ln n$ -approximation algorithm for any $\epsilon > 0$ unless $NP \subseteq DTIME(n^{O(\log \log n)})$.

Theorem

The MINIMUM DOMINATION problem is linear-time solvable for bounded degree star-convex bipartite graphs.

Future Aspects

- To propose algorithms with better time complexity for the MINIMUM DOMINATION problem for circular-convex bipartite graphs and triad-convex bipartite graphs.
- To study other interesting problems which are NP-complete for bipartite graphs, but polynomial time solvable for convex bipartite graphs.

Future Aspects

- To propose algorithms with better time complexity for the MINIMUM DOMINATION problem for circular-convex bipartite graphs and triad-convex bipartite graphs.
- To study other interesting problems which are NP-complete for bipartite graphs, but polynomial time solvable for convex bipartite graphs.

References

- [1] Berge, C.: *Theory of Graphs and its Applications*. Methuen, London, 1962.
- [2] Bertossi, A.A.: Dominating set for split and bipartite graphs, Inform. Process. Lett. 19 (1984) 37-40.
- [3] Chlebík, M., Chlebíková, J.: Approximation hardness of dominating set problems in bounded degree graphs, *Information and Computation*, 206 (11) (2008) 1264-1275.
- [4] Garey, M.R., Johnson, D.S.: Computers and Interactability: a guide to the theory of NP-completeness, Freeman, New York, 1979.
- [5] Ore, O.: *Theory of Graph*. American Mathematical Society, Providence, RI, 1962.

Thank you for your attention...

Questions?

