

Special classes of Boxicity-2 graphs

Dibyayan Chakrabor

Motivation

Definition

Our

Contributions

Special classes of Boxicity-2 graphs CALDAM 2015

Dibyayan Chakraborty

Indian Statistical Institute.Kolkata

February 10, 2015

** Joint work with Sujoy K. Bhore, Sandip Das, Sagnik Sen

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabor

Motivation

Definition

Our

Contribution:

Conclusion

Special classes of Boxicity-2 graphs

> Dibyayan Chakraborty

Motivation

Definitio

Our

Contribution

Rectangle intersection graphs

Intersection graph of axes-parallel rectangles on the plane.

Special classes of Boxicity-2 graphs

> Dibyayan Chakraborty

Motivation

Definitio

Our

Continuation

Rectangle intersection graphs

Intersection graph of axes-parallel rectangles on the plane.

Special classes of Boxicity-2 graphs

Motivation

Rectangle intersection graphs

Intersection graph of axes-parallel rectangles on the plane.

Special classes of Boxicity-2 graphs

Motivation

Rectangle intersection graphs

Intersection graph of axes-parallel rectangles on the plane.

Special classes of Boxicity-2 graphs

> Dibyayan Chakraborty

Motivation

Definitio

Contribution

Contribution

Conclusion

Gap between Boxicity-2 and Boxicity-1 graphs

	Boxicity-2 graphs	Boxicity-1 graphs (Interval graphs)
Recognition	NP-Hard (Kratochvil, 1994)	Linear (McConnel et al., 2000, Booth et al. 1976)
Coloring	NP-Hard (Gulombic et al., 2012)	Polynomial (Stacho 2010, Garey et al., 1980)
Clique Number	Polynomial (Asano et al., 1983)	Polynomial
Clique cover	NP-hard (Asano et al., 1983)	Linear (Hsu et al., 1991)
		, ,
Independent set	NP-hard (Kratochvil et al., 1990)	Polynomial (Gavril, 1974)

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivation

Definitio

Our

Contribution

Objective-1:

Generalisation of interval graphs which have boxicity 2.

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivation

Definition

Contribution

Continuation

Objective-1:

Generalisation of interval graphs which have boxicity 2.

Figure: Can we reduce the grey area?

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivation

Definition

Our

Contribution

Hardness of partitioning

Partitioning a graph into unit interval graphs is NP-Hard [Farrugia, 2004].

Special classes of Boxicity-2 graphs

Motivation

Hardness of partitioning

Partitioning a graph into unit interval graphs is NP-Hard [Farrugia, 2004].

Objective-2:

For which subclasses of boxicity-2 graphs, partitioning is polynomial time solvable?

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabor

Motivation

Definitio

Contribution

Hardness of partitioning

Partitioning a graph into unit interval graphs is NP-Hard [Farrugia, 2004].

Objective-2:

For which subclasses of boxicity-2 graphs, partitioning is polynomial time solvable?

Special classes of Boxicity-2 graphs

Chakrabort

.

Definitions

O....

Contribution

Conclusion

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivat

Definitions

Contribution

.

2SIG

Conclusion

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivat

Definitions

Our

Contributions

Contribution

- Two stab lines in $1 + \epsilon$ distance apart.

$$y=2+\epsilon$$

$$y=1$$

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivat

Definitions

Our

Contribution

..

- Two stab lines in $1 + \epsilon$ distance apart.
- Axes-parallel rectangles with unit height.

Special classes of Boxicity-2 graphs

Definitions

- Two stab lines in $1 + \epsilon$ distance apart.
- Axes-parallel rectangles with unit height.
- Each rectangle intersects exactly one stab line.

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivat

Definitions

Our

Contribution

.

- Two stab lines in $1 + \epsilon$ distance apart.
- Axes-parallel rectangles with unit height.
- Each rectangle intersects exactly one stab line.

Special classes of Boxicity-2 graphs

Dibyayan Chakrabort

Motivat

Definitions

Our

Contribution

Continuation

- Two stab lines in $1 + \epsilon$ distance apart.
- Axes-parallel rectangles with unit height.
- Each rectangle intersects exactly one stab line.

Figure: A representation (right) of a 2SIG graph (left).

Special classes of Boxicity-2 graphs

Definitions

2SUIG

- Two stab lines in $1 + \epsilon$ distance apart.
- Axes-parallel unit squares.
- Each unit squares intersects exactly one stab line.

Figure: A representation (right) of a 2SUIG graph (left).

Special classes of Boxicity-2 graphs

> Dibyayar Chakrabor

Motivation

Definition

Our

Contributions

Conclusion

Special classes of Boxicity-2 graphs

Our

Contributions

Main results

■ Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Hence, the clique number can be computed in polynomial time.

Special classes of Boxicity-2 graphs

Our

Contributions

Main results

■ Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Hence, the clique number can be computed in polynomial time.

Clique number = order of the biggest complete subgraph

Special classes of Boxicity-2 graphs

Contributions

Main results

- Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.
 - Hence, the clique number can be computed in polynomial time.

- Clique number = order of the biggest complete subgraph
- ✓ To understand the properties of the cliques without using the intersection model.

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivat

Dofinitio

Our

Contributions

Contribution

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motiva

Definition

Our

Contributions

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Figure: A labeling scheme of the bridge edges: a useful tool.

Special classes of Boxicity-2 graphs

Our

Contributions

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Figure: A labeling scheme of the bridge edges: a useful tool.

Special classes of Boxicity-2 graphs

Our Contributions

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Figure: A labeling scheme of the bridge edges: a useful tool.

Special classes of Boxicity-2 graphs

Our Contributions

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Figure: A labeling scheme of the bridge edges: a useful tool.

Special classes of Boxicity-2 graphs

Dibyayan Chakrabort

Motiva

Definition

Our

Contributions

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Figure: A labeling scheme of the bridge edges: a useful tool.

Special classes of Boxicity-2 graphs

Dibyayan Chakrabort

Motivat

Definition

Our

Contributions

. .

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Lemma

Bridge edges with different labels are not part of the same maximal clique in a 2SUIG.

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivat

Dofinitio

Our

Contributions

Contribution

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Figure: Set containing edges with different labels.

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivat

D-G-IAI-

Our

Contributions

Contribution

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Figure: Edges with same label creates maximal cliques.

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabor

Motiva

. .

Our Contributions

Theorem

Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.

Figure: Bipartite graph created by the endpoints in different partition.

Enumerate the maximal bi-cliques using algorithm of Alexe, 2004.

Main results

Special classes of Boxicity-2 graphs

Our

Contributions

■ Given the partition we can list all the maximal cliques of a

Hence, the clique number can be computed in polynomial time.

■ For any 2SIG graph G we have $\chi(G) \leq 2\omega(G)$.

2SUIG in polynomial time.

Special classes of Boxicity-2 graphs

Our

Contributions

Main results

- Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time. Hence, the clique number can be computed in polynomial time.
- For any 2SIG graph G we have $\chi(G) \leq 2\omega(G)$.
- Let G be a bridge-triangle-free 2SUIG graph. Then $\chi(G) \leq \omega(G) + 1.$

Special classes of Boxicity-2 graphs

Our

Contributions

Main results

- Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time. Hence, the clique number can be computed in polynomial time.
- For any 2SIG graph G we have $\chi(G) < 2\omega(G)$.
- Let G be a bridge-triangle-free 2SUIG graph. Then $\chi(G) \leq \omega(G) + 1.$

Bridge-triangle-free = no triangle having a bridge edge (for some partition)

About bridge-triangle-free 2SUIG graphs

Special classes of Boxicity-2 graphs

> Dibyayar Chakrabor

Motivat

. .

Our

Contributions

Conclusion

Figure: A bridge-triangle-free 2SUIG graph.

About bridge-triangle-free 2SUIG graphs

Special classes of Boxicity-2 graphs

Dibyayar Chakrabor

Motiva

B 6 111

Our

Contributions

Conclusion

Figure: A bridge-triangle-free 2SUIG graph.

✓ "Nearly perfect" graph, Gyárfás, 1987, 2013; Kostochka, 2004.

About bridge-triangle-free 2SUIG graphs

Special classes of Boxicity-2 graphs

Chakrabo

Motiva

Dofiniti

Our

Contributions

Figure: A bridge-triangle-free 2SUIG graph.

- √ "Nearly perfect" graph, Gyárfás, 1987, 2013; Kostochka, 2004.
- \checkmark Subclass of 2-interval graphs. (Colouring:- NP-Hard in general, Kratochvil et al., 2001).

Special classes of Boxicity-2 graphs

Contributions

Our

Main results

■ Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time. Hence, the clique number can be computed in polynomial time.

- For any 2SIG graph G we have $\chi(G) \leq 2\omega(G)$.
- Let G be a bridge-triangle-free 2SUIG graph. Then $\chi(G) \leq \omega(G) + 1$.

Special classes of Boxicity-2 graphs

Dibyayan Chakrabor

Motivat

Our

Contributions

Main results

- Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.
 Hence, the clique number can be computed in polynomial time.
- For any 2SIG graph G we have $\chi(G) \leq 2\omega(G)$.
- Let G be a bridge-triangle-free 2SUIG graph. Then $\chi(G) \leq \omega(G) + 1$.
- A graph is a $2SUI^2G$ graph G if and only if it can be represented by an ISSR adjacency matrix.

Special classes of Boxicity-2 graphs

Our

Contributions

Main results

- Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time. Hence, the clique number can be computed in polynomial time.
- For any 2SIG graph G we have $\chi(G) < 2\omega(G)$.
- Let G be a bridge-triangle-free 2SUIG graph. Then $\chi(G) \leq \omega(G) + 1$.
- \blacksquare A graph is a 2SUI²G graph G if and only if it can be represented by an ISSR adjacency matrix.

 \checkmark 2SUI²G = a 2SUIG graph with the upper stab line inducing an independent set (for some partition)

Example of a 2SUI²G graph

Special classes of Boxicity-2 graphs

Dibyayan Chakrabor

Motivat

D-G-isi-

Our

Contributions

. . .

Figure: A 2SUI²G graph.

Definition of ISSR matrix

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabor

Motiva

D C 101

Our

Contributions

Conclusion

$$ISSR = \begin{bmatrix} [SNIR] & [PSA] \\ \hline [PSA]^t & 0 \end{bmatrix}$$

Definition of ISSR matrix

Special classes of Boxicity-2 graphs

Our

Contributions

$$ISSR = \begin{bmatrix} [SNIR] & [PSA] \\ \hline [PSA]^t & 0 \end{bmatrix}$$

Figure: Example of a SNIR matrix

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabor

Motivat

Definitions

Our Contributions

Contribution

Conclusio

Main results

- Given the partition we can list all the maximal cliques of a 2SUIG in polynomial time.
 Hence, the clique number can be computed in polynomial time.
- For any 2SIG graph G we have $\chi(G) \leq 2\omega(G)$.
- Let G be a bridge-triangle-free 2SUIG graph. Then $\chi(G) \leq \omega(G) + 1$.
- A graph is a $2SUI^2G$ graph G if and only if it can be represented by an ISSR adjacency matrix.

Special classes of Boxicity-2 graphs

Dibyayan Chakrabort

Motivat

_ ...

Our

Contribution

Conclusion

Extensions

■ Chromatic number of 2*SUIG* graphs.

Special classes of Boxicity-2 graphs

Dibyayan Chakrabort

Motivat

.

Our

Contribution

Conclusion

Extensions

- Chromatic number of 2*SUIG* graphs.
- Nice extensions of matrix characterisation are possible.

Special classes of Boxicity-2 graphs

Dibyayan Chakrabort

Motivat

Definitio

Our

Contribution

Conclusion

Conjecture

Recognising 2SIG is NP hard.

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivat

D (1)

Our

Contribution

Conclusion

Conjecture

Recognising 2SIG is NP hard.

Open problems

■ Consider circles as the intersecting objects.

Special classes of Boxicity-2 graphs

Dibyayan Chakrabort

Motivat

Definition

Our

Contribution

Conclusion

Conjecture

Recognising 2SIG is NP hard.

Open problems

- Consider **circles** as the intersecting objects.
- Consider parallel stab lines with **arbitrary slope**.

Special classes of Boxicity-2 graphs

> Dibyayan Chakrabort

Motivat

. . . .

Our

Contribution

Conclusion

Conjecture

Recognising 2SIG is NP hard.

Open problems

- Consider circles as the intersecting objects.
- Consider parallel stab lines with **arbitrary slope**.
- Consider two concentric circles as the stabbing objects.

Special classes of Boxicity-2 graphs

Dibyayan Chakrabort

Motivat

Our

Contributions

Conclusion

Conjecture

Recognising 2SIG is NP hard.

Open problems

- Consider circles as the intersecting objects.
- Consider parallel stab lines with **arbitrary slope**.
- Consider two concentric circles as the stabbing objects.
- Generalize the results of unit interval graphs.

Special classes of Boxicity-2 graphs

> Dibyayan Chakraborty

Motivation

Definition

Our

Contribution:

Conclusion

