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Intersection graph of axes-parallel rectangles on the plane.

Figure: Rectangle intersection graph.
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Gap between Boxicity-2 and Boxicity-1 graphs

Boxicity-2 graphs Boxicity-1 graphs (Interval graphs)

Recognition NP-Hard (Kratochvil, 1994) Linear (McConnel et al., 2000, Booth et al. 1976)

Coloring NP-Hard (Gulombic et al., 2012) Polynomial (Stacho 2010, Garey et al., 1980)

Clique Number Polynomial (Asano et al., 1983) Polynomial

Clique cover NP-hard (Asano et al., 1983) Linear (Hsu et al., 1991)

Independent set NP-hard (Kratochvil et al., 1990) Polynomial (Gavril, 1974)
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Objective-1:
Generalisation of interval graphs which have boxicity 2.

Figure: Can we reduce the grey area?
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Hardness of partitioning
Partitioning a graph into unit interval graphs is NP-Hard [Farrugia,
2004].

Objective-2:
For which subclasses of boxicity-2 graphs, partitioning is polynomial
time solvable?
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Figure: A representation (right) of a 2SIG graph (left).
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Two stab lines in 1 + ε distance apart.
Axes-parallel unit squares.
Each unit squares intersects exactly one stab line.
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Figure: A representation (right) of a 2SUIG graph (left).
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Main results

Given the partition we can list all the maximal cliques of a
2SUIG in polynomial time.
Hence, the clique number can be computed in polynomial time.

X Clique number = order of the biggest complete subgraph

X To understand the properties of the cliques without using the
intersection model.
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Figure: A labeling scheme of the bridge edges: a useful tool.

20 / 38



Special classes of
Boxicity-2 graphs

Dibyayan
Chakraborty

Motivation

Definitions

Our
Contributions

Conclusion

Proof (sketch)

Theorem
Given the partition we can list all the maximal cliques of a 2SUIG in
polynomial time.

a b c d

v w x y z

Figure: A labeling scheme of the bridge edges: a useful tool.

20 / 38



Special classes of
Boxicity-2 graphs

Dibyayan
Chakraborty

Motivation

Definitions

Our
Contributions

Conclusion

Proof (sketch)

Theorem
Given the partition we can list all the maximal cliques of a 2SUIG in
polynomial time.

a b c d

v w x y z

0 0

Figure: A labeling scheme of the bridge edges: a useful tool.

21 / 38



Special classes of
Boxicity-2 graphs

Dibyayan
Chakraborty

Motivation

Definitions

Our
Contributions

Conclusion

Proof (sketch)

Theorem
Given the partition we can list all the maximal cliques of a 2SUIG in
polynomial time.

a b c d

v w x y z

0 0 1 1

Figure: A labeling scheme of the bridge edges: a useful tool.

22 / 38



Special classes of
Boxicity-2 graphs

Dibyayan
Chakraborty

Motivation

Definitions

Our
Contributions

Conclusion

Proof (sketch)

Theorem
Given the partition we can list all the maximal cliques of a 2SUIG in
polynomial time.

a b c d

v w x y z

0 0 1 1
2

Figure: A labeling scheme of the bridge edges: a useful tool.

23 / 38



Special classes of
Boxicity-2 graphs

Dibyayan
Chakraborty

Motivation

Definitions

Our
Contributions

Conclusion

Proof (sketch)

Theorem
Given the partition we can list all the maximal cliques of a 2SUIG in
polynomial time.

a b c d

v w x y z

0 0 1 1
2 3

3

Figure: A labeling scheme of the bridge edges: a useful tool.

24 / 38



Special classes of
Boxicity-2 graphs

Dibyayan
Chakraborty

Motivation

Definitions

Our
Contributions

Conclusion

Proof (sketch)

Theorem
Given the partition we can list all the maximal cliques of a 2SUIG in
polynomial time.

Lemma
Bridge edges with different labels are not part of the same maximal
clique in a 2SUIG.
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Figure: Bipartite graph created by the endpoints in different partition.

Enumerate the maximal bi-cliques using algorithm of Alexe, 2004.
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2SUIG in polynomial time.
Hence, the clique number can be computed in polynomial time.

For any 2SIG graph G we have χ(G) ≤ 2ω(G).
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Figure: A bridge-triangle-free 2SUIG graph.

X ”Nearly perfect” graph, Gyárfás, 1987, 2013; Kostochka, 2004.

X Subclass of 2-interval graphs. (Colouring:- NP-Hard in general,
Kratochvil et al., 2001).

31 / 38



Special classes of
Boxicity-2 graphs

Dibyayan
Chakraborty

Motivation

Definitions

Our
Contributions

Conclusion

About bridge-triangle-free 2SUIG graphs

Figure: A bridge-triangle-free 2SUIG graph.
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Given the partition we can list all the maximal cliques of a
2SUIG in polynomial time.
Hence, the clique number can be computed in polynomial time.

For any 2SIG graph G we have χ(G) ≤ 2ω(G).

Let G be a bridge-triangle-free 2SUIG graph. Then
χ(G) ≤ ω(G) + 1.

A graph is a 2SUI2G graph G if and only if it can be represented
by an ISSR adjacency matrix.

X 2SUI2G = a 2SUIG graph with the upper stab line inducing an
independent set (for some partition)
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Figure: A 2SUI2G graph.
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ISSR =
 [SNIR ] [PSA]

[PSA]t 0



Figure: Example of a SNIR matrix
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Extensions

Chromatic number of 2SUIG graphs.

Nice extensions of matrix characterisation are possible.
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Conclusion with open problems

Conjecture
Recognising 2SIG is NP hard.

Open problems

Consider circles as the intersecting objects.

Consider parallel stab lines with arbitrary slope.

Consider two concentric circles as the stabbing objects.

Generalize the results of unit interval graphs.
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