Generalization of the Consecutive-ones Property

N. S. Narayanaswamy, Anju Srinivasan

Department of Computer Science and Engineering, Indian Institute of Technology Madras

Feb 2015

- Introduction
 - An Illustration
 - Example
 - **Terminology**
 - Motivation
- Problems
- Characterization of a feasible TPL ICPPL
- **4** TPL for arbitrary trees Similarity to COP
- 6 Conclusion **Application**

An Illustration

• To introduce the combinatorial problem of TPL.

• A set of n **students** arrive for a summer course, say $\{a, b, c, d, e, f, g, h, i, j, k\}$, n = 11.

- A set of n **students** arrive for a summer course, say $\{a, b, c, d, e, f, g, h, i, j, k\}$, n = 11.
- They form m study groups, say $\{R, B, O, G\}$, m = 4

- A set of n students arrive for a summer course, say $\{a, b, c, d, e, f, g, h, i, j, k\}$, n = 11.
- They form m study groups, say $\{R, B, O, G\}$, m = 4
- A student may be in more than one study group but will be in at least one, say

$$R = \{g, h, i, j, k\}, B = \{a, b, e, g\}, O = \{c, b, d\},$$

 $G = \{e, f, g, i\}$

- A set of n students arrive for a summer course, say $\{a, b, c, d, e, f, g, h, i, j, k\}$, n = 11.
- They form m study groups, say $\{R, B, O, G\}$, m = 4
- A student may be in more than one study group but will be in at least one, say

$$R = \{g, h, i, j, k\}, B = \{a, b, e, g\}, O = \{c, b, d\},$$

 $G = \{e, f, g, i\}$

• There are *n* single occupancy **apartments** in the university campus for their accommodation.

- A set of n students arrive for a summer course, say $\{a, b, c, d, e, f, g, h, i, j, k\}$, n = 11.
- They form m study groups, say $\{R, B, O, G\}$, m = 4
- A student may be in more than one study group but will be in at least one, say

$$R = \{g, h, i, j, k\}, B = \{a, b, e, g\}, O = \{c, b, d\},$$

 $G = \{e, f, g, i\}$

- There are *n* single occupancy **apartments** in the university campus for their accommodation.
- All these apartments are placed such that streets connecting them do not form loops - streets form a tree

The problem

How should the students be allocated apartments such that:

students of each study group are neighbours?

The problem

Introduction

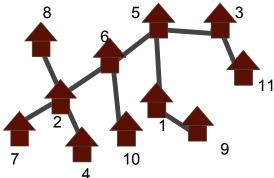
An Illustration

How should the students be allocated apartments such that:

- students of each study group are neighbours?
- i.e. a study group forms a path in the tree.

Introduction

000•0000 An Illustration



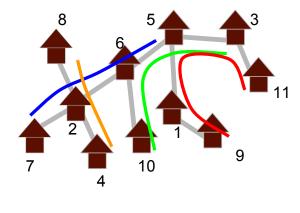
$$R = \{g, h, i, j, k\}$$

$$B = \{a, b, e, g\}$$

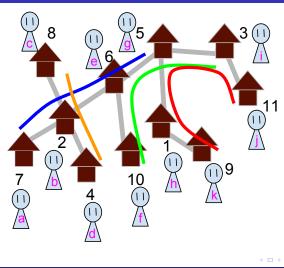
$$O = \{c, b, d\}$$

$$G = \{e, f, g, i\}$$

$$G = \{e, f, g, i\}$$

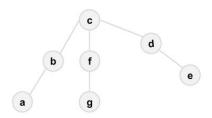


 $R = \{g, h, i, j, k\}$ \rightarrow {9, 1, 5, 3, 11} $B = \{a, b, e, g\}$ \rightarrow {7, 2, 6, 5} $O = \{c, b, d\}$ $\rightarrow \{4, 2, 8\}$ $G = \{e, f, g, i\}$ $\rightarrow \{10, 6, 5, 3\}$



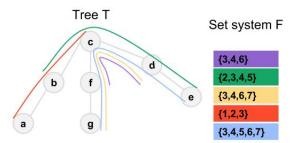
```
R = \{g, h, i, j, k\}
\rightarrow {9, 1, 5, 3, 11}
B = \{a, b, e, g\}
\rightarrow {7, 2, 6, 5}
O = \{c, b, d\}
\rightarrow \{4, 2, 8\}
G = \{e, f, g, i\}
\rightarrow {10, 6, 5, 3}
```

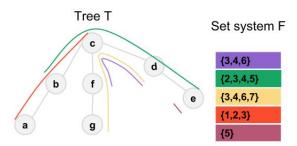
Tree T

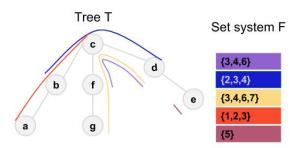


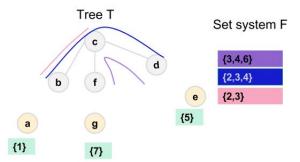
 $F = \{ \{3,4,6\}, \{2,3,4,5\}, \{3,4,6,7\}, \{1,2,3\}, \{3,4,5,6,7\} \}$ $P = \{ \{d,c,f\}, \{e,d,c,b\}, \{d,c,f,g\}, \{c,b,a\}, \{e,d,c,f,g\} \}$

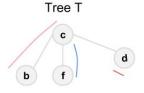
Introduction

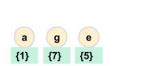


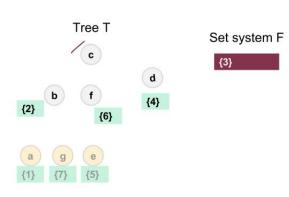


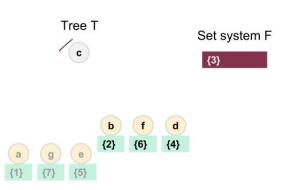


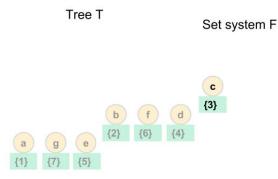


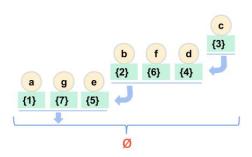












Introduction

00000000 Terminology

The set of study groups → Set system / Hypergraph

- The set of study groups → Set system / Hypergraph
- The streets with apartments → Target tree

Introduction

Tree Path Labeling of Path Hypergraphs

- The set of study groups → Set system / Hypergraph
- The streets with apartments → Target tree
- The path mapping to study groups → Tree Path Labeling (TPL)

- The set of study groups → Set system / Hypergraph
- The streets with apartments → Target tree
- The path mapping to study groups → Tree Path Labeling (TPL)
- The apartment allocation → Path Hypergraph Isomorphism

There *exists* an apartment allocation that "fits" the path mapping

There exists a hypergraph isomorphism that "fits" the TPL

There exists a hypergraph isomorphism that "fits" the TPL

 \Rightarrow the TPL is FEASIBLE

There exists a hypergraph isomorphism that "fits" the TPL

 \Rightarrow the TPL is FEASIBLE

There *exists* an apartment allocation that gives some study group path mapping

There exists a hypergraph isomorphism that "fits" the TPL

 \Rightarrow the TPL is FEASIBLE

There *exists* a hypergraph isomorphism that gives at least one feasible TPL

There exists a hypergraph isomorphism that "fits" the TPL

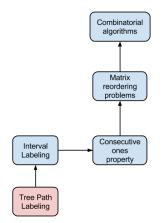
⇒ the TPL is FEASIBLE

There *exists* a hypergraph isomorphism that gives at least one feasible TPL

⇒ the hypergraph is a PATH HYPERGRAPH

Consecutive Ones → **Path Labeling**

The motivation



Input

A hypergraph \mathcal{F} with vertex set U, a tree T, a set of paths \mathcal{P} from T and a bijection $\ell: \mathcal{F} \to \mathcal{P}$.

Question

Does there exist a bijection $\phi: U \to V(T)$ such that ϕ when applied on any hyperedge in \mathcal{F} will give the path mapped to it by the given tree path labeling ℓ .

i.e., $l(S) = {\phi(x) \mid x \in S}$, for every hyperedge $S \in \mathcal{F}$

FEASIBLE TREE PATH LABELING

- Is the given TPL ℓ of hypergraph \mathcal{F} on tree T feasible?
- What is the hypergraph isomorphism $\phi: U \to V(T)$?
- Solvable in polynomial time.

Compute Feasible Tree Path Labeling

Input

A hypergraph \mathcal{F} with vertex set U and a tree T.

Question

Does there exist a set of paths \mathcal{P} from \mathcal{T} and a bijection $\ell: \mathcal{F} \to \mathcal{P}$, such that FEASIBLE TREE PATH LABELING returns **true** on $(\mathcal{F}, \mathcal{T}, \ell)$.

Compute Feasible Tree Path Labeling

- Is the given hypergraph \mathcal{F} a path hypergraph w.r.t. target tree T?
- i.e. find at least one feasible tree path labeling $\ell: \mathcal{F} \to P$, P is a set of paths on T.
- Complexity is inconclusive for arbitrary trees, polynomial time for certain classes of trees.

COMPUTE FEASIBLE TREE PATH LABELING when target tree is an interval or path P_n

Compute Interval Labeling

- Is the given hypergraph F an interval hypergraph?
- Equivalent to consecutive ones property checking
- Finding an interval labelling
- Solvable in polynomial time.

FEASIBLE TREE PATH LABELING

Input

A hypergraph \mathcal{F} with vertex set U, a tree T, a set of paths \mathcal{P} from T and a bijection $\ell : \mathcal{F} \to \mathcal{P}$.

Question

Does there exist a bijection $\phi: U \to V(T)$ such that ϕ when applied on any hyperedge in \mathcal{F} will give the path mapped to it by the given tree path labeling ℓ .

i.e., $l(S) = {\phi(x) \mid x \in S}$, for every hyperedge $S \in \mathcal{F}$.

A characterization of feasible TPL

Intersection Cardinality Preserving Path Labeling (ICPPL)

A path labeling (\mathcal{F}, ℓ) on the given tree T s.t.

$$|S_1 \cap S_2 \cap S_3| = |\ell(S_1) \cap \ell(S_2) \cap \ell(S_3)|$$

for all not necessarily distinct $S_1, S_2, S_3 \in \mathcal{F}$

If T is a path, ICPPL is referred to as an Intersection Cardinality Preserving Interval Assignment (ICPIA)

A characterization of feasible TPL

Intersection Cardinality Preserving Path Labeling (ICPPL)

A path labeling (\mathcal{F}, ℓ) on the given tree T s.t.

$$|S_1 \cap S_2 \cap S_3| = |\ell(S_1) \cap \ell(S_2) \cap \ell(S_3)|$$

for all not necessarily distinct $S_1, S_2, S_3 \in \mathcal{F}$

If T is a path, ICPPL is referred to as an Intersection Cardinality Preserving Interval Assignment (ICPIA)

Theorem

A path labeling (\mathcal{F}, ℓ) on tree T is feasible iff it is an ICPPL.

Given an ICPPL (\mathcal{F}, ℓ) on tree T

ullet Uses two filters to refine (\mathcal{F},ℓ)

- Uses two filters to refine (\mathcal{F}, ℓ)
- **filter common leaf** ensures that the resulting ICPPL has no two path labels sharing a leaf.

- Uses two filters to refine (\mathcal{F}, ℓ)
- **filter common leaf** ensures that the resulting ICPPL has no two path labels sharing a leaf.
- filter fix leaf finds the pre-image of each leaf in T.

- Uses two filters to refine (\mathcal{F}, ℓ)
- **filter common leaf** ensures that the resulting ICPPL has no two path labels sharing a leaf.
- filter fix leaf finds the pre-image of each leaf in
 T.
- Remove leaves from T and their preimages from \mathcal{F} . Repeat filters until T becomes a path.

- Uses two filters to refine (\mathcal{F}, ℓ)
- **filter common leaf** ensures that the resulting ICPPL has no two path labels sharing a leaf.
- filter fix leaf finds the pre-image of each leaf in T.
- Remove leaves from T and their preimages from \mathcal{F} . Repeat filters until T becomes a path.
- When T is a path, problem becomes interval assignment. Use ICPIA

filter common leaf (\mathcal{F}, l)

• Pick any two paths P_1, P_2 in (\mathcal{F}, ℓ) that share a leaf.

filter common leaf (\mathcal{F}, l)

- Pick any two paths P_1, P_2 in (\mathcal{F}, ℓ) that share a leaf.
- Remove S_1, S_2, P_1, P_2 from (\mathcal{F}, ℓ)

filter common leaf (\mathcal{F}, l)

- Pick any two paths P_1, P_2 in (\mathcal{F}, ℓ) that share a leaf.
- Remove S_1, S_2, P_1, P_2 from (\mathcal{F}, ℓ)
- Add to (\mathcal{F}, ℓ) : $\ell(S_1 \setminus S_2) = P_1 \setminus P_2$ $\ell(S_2 \setminus S_1) = P_2 \setminus P_1$ $\ell(S_1 \cap S_2) = P_1 \cap P_2$

filter common leaf (\mathcal{F}, l)

- Pick any two paths P_1, P_2 in (\mathcal{F}, ℓ) that share a leaf.
- Remove S_1, S_2, P_1, P_2 from (\mathcal{F}, ℓ)
- Add to (\mathcal{F}, ℓ) : $\ell(S_1 \setminus S_2) = P_1 \setminus P_2$ $\ell(S_2 \setminus S_1) = P_2 \setminus P_1$ $\ell(S_1 \cap S_2) = P_1 \cap P_2$
- Repeat till no two paths share a leaf.

filter common leaf (\mathcal{F}, ℓ)

Lemma

Let (\mathcal{F}', ℓ') be the resulting labeling after applying filter common leaf to TPL (\mathcal{F}, ℓ) . If (\mathcal{F}, ℓ) is an ICPPL, (\mathcal{F}', ℓ') is also an ICPPI

filter common leaf (\mathcal{F}, ℓ)

Lemma

Let (\mathcal{F}', ℓ') be the resulting labeling after applying filter common leaf to TPL (\mathcal{F}, ℓ) . If (\mathcal{F}, ℓ) is an ICPPL, (\mathcal{F}', ℓ') is also an ICPPL.

Proof.

- Induction on iteration of the filter.
- Invariants: $\ell_i(S)$ is a path, ℓ_i maintains ICPPL's intersection cardinality equations.
- ICPPL also preserves 4-way intersection cardinalities.

filter fix leaf (\mathcal{F}, ℓ)

A leaf is unique to a path

- A leaf is unique to a path
- Pick a leaf v, let it be on path P. Let $\ell(S) = P$

- A leaf is unique to a path
- Pick a leaf v, let it be on path P. Let $\ell(S) = P$
- Pick an element x from S which is not present in any other set. i.e. $x \in S \setminus \bigcup_{S_i \neq S} S_i$

- A leaf is unique to a path
- Pick a leaf v, let it be on path P. Let $\ell(S) = P$
- Pick an element x from S which is not present in any other set. i.e. $x \in S \setminus \bigcup_{S_i \neq S} S_i$
- Remove S, P from (\mathcal{F}, ℓ)

- A leaf is unique to a path
- Pick a leaf v, let it be on path P. Let $\ell(S) = P$
- Pick an element x from S which is not present in any other set. i.e. $x \in S \setminus \bigcup_{S_i \neq S} S_i$
- Remove S, P from (\mathcal{F}, ℓ)
- Add $\ell(S \setminus x) = P \setminus v$. Define $\phi(x) = v$

- A leaf is unique to a path
- Pick a leaf v, let it be on path P. Let $\ell(S) = P$
- Pick an element x from S which is not present in any other set. i.e. $x \in S \setminus \bigcup_{S_i \neq S} S_i$
- Remove S, P from (\mathcal{F}, ℓ)
- Add $l(S \setminus x) = P \setminus v$. Define $\phi(x) = v$
- Remove leaf v from T

- A leaf is unique to a path
- Pick a leaf v, let it be on path P. Let $\ell(S) = P$
- Pick an element x from S which is not present in any other set. i.e. $x \in S \setminus \bigcup_{S_i \neq S} S_i$
- Remove S, P from (\mathcal{F}, ℓ)
- Add $l(S \setminus x) = P \setminus v$. Define $\phi(x) = v$
- Remove leaf v from T
- Repeat till there are no more unique paths for leaves. Call filter common leaf.

- A leaf is unique to a path
- Pick a leaf v, let it be on path P. Let $\ell(S) = P$
- Pick an element x from S which is not present in any other set. i.e. $x \in S \setminus \bigcup_{S_i \neq S} S_i$
- Remove S, P from (\mathcal{F}, ℓ)
- Add $l(S \setminus x) = P \setminus v$. Define $\phi(x) = v$
- Remove leaf v from T
- Repeat till there are no more unique paths for leaves. Call filter common leaf.
- End if T is empty

filter fix leaf (\mathcal{F}, ℓ)

Critical part is finding $x \in S \setminus \bigcup_{S_i \neq S} S_i$

filter fix leaf (\mathcal{F}, l)

Critical part is finding $x \in S \setminus \bigcup_{S_i \neq S} S_i$

Lemma

If l(S) uniquely has a leaf, S_{priv} is non-empty where $S_{priv} = S \setminus \bigcup_{S_i \neq S} S_i$.

filter fix leaf (\mathcal{F}, ℓ)

Critical part is finding $x \in S \setminus \bigcup_{S \neq S} S_i$

Lemma

If l(S) uniquely has a leaf, S_{priv} is non-empty where $S_{priv} = S \setminus \bigcup_{S_i \neq S} S_i$.

Proof.

- Let $\mathcal{F}' = S \cap S_i$ and $\ell'(S \cap S_i) = P \cap P_i$ for all $S_i \in \mathcal{F}$, $\ell(S_i) = P_i$.
- $S_{two} = supp(\mathcal{F}'), P_{two} = supp(\ell')$
- (\mathcal{F}', ℓ') is an ICPIA. Therefore $|S_{two}| = |P_{two}|$. Hence $|S_{priv}| = |P_{priv}|$. We know P has at least a leaf.

Input

A hypergraph \mathcal{F} with vertex set U and a tree T.

Question

Does there exist a set of paths \mathcal{P} from T and a bijection $\ell: \mathcal{F} \to \mathcal{P}$, such that FEASIBLE TREE PATH LABELING returns true on $(\mathcal{F}, \mathcal{T}, \ell)$.

Special case

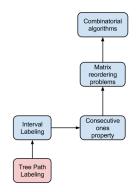
Interval assignment problem / COP

- 1 T is a path \Longrightarrow paths in T are intervals
- 2 Only pairwise intersection cardinality needs to be preserved \Longrightarrow ICPIA
- 3 Higher level intersection cardinalities preserved by **Helly** Property

This problem is equivalent to Consecutive Ones Property of binary matrices

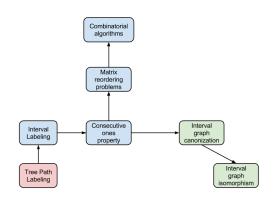
Path Labeling → Graph Isomorphism

Application



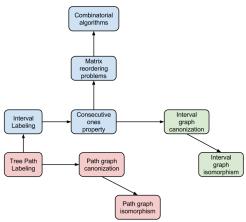
Path Labeling → Graph Isomorphism

Application



Path Labeling → Graph Isomorphism

Application



Thank you

Questions?

