Cumulative Vehicle Routing Problem: A Column Generation Approach

Rishi Ranjan Singh (Joint work with Daya Gaur)

Department of Computer Science and Engineering Indian Institute of Technology, Ropar rishirs@iitrpr.ac.in

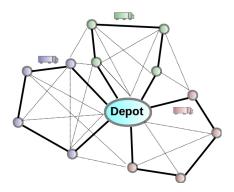
February 10, 2015

Outline

- Problem Definition
- Mathematical Formulation
- Column Generation Algorithm
- Simulation Results
- Worst Case Integrality Gap
- Conclusion

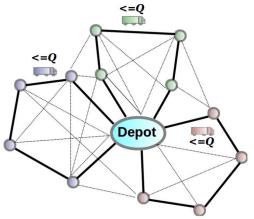
Vehicle Routing Problems (VRPs)

- Introduced by Dantzig and Ramser in 1959.
- Input: A fleet of delivery vehicles at the depot and customers with some demand.
- Objective: Scheduling the vehicles to meet the demand of the customers so as to minimize the total distance (or time).



Capacitated VRPs (CVRPs)

 Capacitated VRPs (CVRPs): Variants of the VRPs with capacity constraint on the vehicles such that the load on each vehicle should not exceed the given capacity.



Fuel Cost (Expense)

- Major factor of the transportation cost.
- As much as 60% of the operational cost [Sahin et al., 2009]
 - Cargo in sea: 32%
 - Railroad: 46%
 - Road transportation : 60%

Figure: Source: Google Search

Fuel consumption

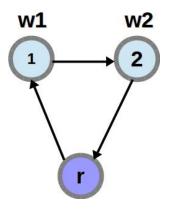
- Affected by various factors [Demir et al., 2011; Newman et al., 1989].
 - Distance traveled
 - Weight of the vehicle
 - Vehicle speed
 - Road inclination
 - Aerodynamic drag
 - Traffic congestion etc.

A Simplified model of fuel consumption

- Assumes that the fuel consumed per unit distance is proportional to the total weight of vehicle.
- Total weight of vehicle = weight of the empty vehicle + weight of cargo on the vehicle.
- Studied as
 - Energy Minimizing in VRPs by Kara et al., 2007.
 - Cumulative VRPs by Kara et al., 2008.
 - Linear Model of Fuel Consumption for the Capacitated Vehicles by Xiao et al., 2012.

Cumulative Cost Function

- a: cost of moving empty vehicle per unit distance
- b : cost of moving unit weight cargo per unit distance



$$a \cdot d(r, 1, 2, r) + b \cdot [w1 \cdot (d(1, 2, r)) + w2 \cdot d(2, r)]$$

Cumulative Vehicle Routing Problems (Cum-VRPs)

Input:

- A complete, weighted, undirected graph G(V, E) (satisfying triangle inequality).
- A special depot node "r" and a set of customers located at other nodes.
- An object of positive weight d_i located at the customer node i, i ∈ (V \ r).
- An empty truck located at the depot.
- The truck at any point of time can carry objects of total weight not exceeding Q.

Objective: Devise a travel schedule for the truck so that all the objects are brought to the depot and the **cumulative cost is minimized**. We allow the vehicle to **offload** cargo at the depot **an arbitrary number of times**.

Why the problem is interesting?

Generalizes two well known problems:

- Capacitated Vehicle Routing Problems (CVRPs)
- Capacitated Minimum Latency Problems (CMLPs)

Related Works

- Blum et al. (1994) gave a constant factor approximation algorithm (a single vehicle with infinite capacity, no intermediate offloading allowed).
 Travel schedule: a single TSP tour of the graph.
- Defined and Formulated by Kara et al. (2007,2008).
- Gaur et al. (2013) gave constant factor approximation algorithms for four variations of the problem.

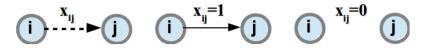
MILP Formulation

Some Notations

- n: number of customers.
- Q: capacity of the vehicle.
- a : cost of moving empty vehicle per unit distance.
- *b* : cost of moving unit weight cargo per unit distance.
- d_i : demand at customer node i. (integral)
- c_{ij} : distance between customer i and customer j.

Two decision Variables:

• $x_{ij} = 1$, if the vehicle visits customer j just after visiting customer i, otherwise $x_{ij} = 0$.



 y_{ij}: the weight of the cargo carried by the vehicle from customer i to customer j.

Objective Function

Cost of moving empty vehicle on solution tour

Cost of moving cargo from customer nodes to depot

min:
$$a \cdot \sum_{i=0}^{n} \sum_{j=0}^{n} (x_{ij}c_{ij}) + b \cdot \sum_{i=0}^{n} \sum_{j=0}^{n} (y_{ij}c_{ij})$$

a - cost

b - cost

Objective Function is same as defined by Gaur et al. (2013).

Single-Visit Constraint

min:
$$\sum_{i=0}^{n} \sum_{j=0}^{n} ((a \cdot x_{ij} + b \cdot y_{ij})c_{ij})$$
 (1)

s.t.:
$$\sum_{i=0}^{n} x_{ij} = 1$$
 $(j = 1, 2, \dots, n)$ (2)

Every customer node j will have exactly one incoming edge

Single-Visit Constraint

min:
$$\sum_{i=0}^{n} \sum_{j=0}^{n} ((a \cdot x_{ij} + b \cdot y_{ij})c_{ij})$$
 (1)

s.t.:
$$\sum_{i=0}^{n} x_{ij} = 1$$
 $(j = 1, 2, \dots, n)$ (2)

$$\sum_{i=0}^{n} x_{ip} - \sum_{j=0}^{n} x_{pj} = 0 \qquad (p = 1, 2, \dots, n)$$
 (3)

In-degree and out-degree is same at each customer node p

Flow Constraint

min:
$$\sum_{i=0}^{n} \sum_{j=0}^{n} ((a \cdot x_{ij} + b \cdot y_{ij})c_{ij})$$
 (1)

s.t.:
$$\sum_{i=0}^{n} x_{ij} = 1$$
 $(j = 1, 2, \dots, n)$ (2)

$$\sum_{i=0}^{n} x_{ip} - \sum_{j=0}^{n} x_{pj} = 0 \qquad (p = 1, 2, \dots, n)$$
 (3)

$$\sum_{j=0}^{n} y_{pj} - \sum_{i=0}^{n} y_{ip} = d_{p} \qquad (p = 1, 2, \dots, n)$$
 (4)

Flow constraint : ensures that the supply at each customer node is picked

Capacity Constraint

min:
$$\sum_{i=0}^{n} \sum_{j=0}^{n} ((a \cdot x_{ij} + b \cdot y_{ij})c_{ij})$$
 (1)

s.t.:
$$\sum_{i=0}^{n} x_{ij} = 1$$
 $(j = 1, 2, \dots, n)$ (2)

$$\sum_{i=0}^{n} x_{ip} - \sum_{j=0}^{n} x_{pj} = 0 \qquad (p = 1, 2, \dots, n)$$
 (3)

$$\sum_{j=0}^{n} y_{pj} - \sum_{i=0}^{n} y_{ip} = d_{p} \qquad (p = 1, 2, \dots, n)$$
 (4)

$$y_{ij} \leq Q \cdot x_{ij} \qquad (i, j = 1, 2, \cdots, n) \qquad (5)$$

capacity constraint

MILP Formulation due to Kara et al. [3, 4]

min:
$$\sum_{i=0}^{n} \sum_{j=0}^{n} ((a \cdot x_{ij} + b \cdot y_{ij}) c_{ij})$$
 (1)

s.t.:
$$\sum_{i=0}^{n} x_{ij} = 1$$
 $(j = 1, 2, \dots, n)$ (2)

$$\sum_{i=0}^{n} x_{ip} - \sum_{j=0}^{n} x_{pj} = 0 \qquad (p = 1, 2, \dots, n) \quad (3)$$

$$\sum_{i=0}^{n} y_{pj} - \sum_{i=0}^{n} y_{ip} = d_{p} \qquad (p = 1, 2, \dots, n) \quad (4)$$

$$y_{ij} \leq Q \cdot x_{ij} \qquad (i, j = 1, 2, \cdots, n) \quad (5)$$

$$x_{ij} \in \{0,1\}$$
 $(i,j=0,1,2,\cdots,n)$ (6)

$$y_{ii} \ge 0$$
 $(i, j = 0, 1, 2, \dots, n)$ (7)

An Equivalent Set cover formulation

Given by Balinski and Quandt (1964) for VRP.

$$min: \sum_{j \in R} \theta_j \cdot \alpha_j \tag{8}$$

$$s.t.: \sum_{j\in R} z_{ij} \cdot \alpha_j \geq 1 \qquad (i=1,2,\cdots,n)$$
 (9)

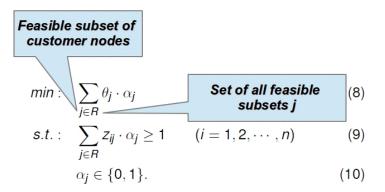
$$\alpha_j \in \{0,1\}. \tag{10}$$

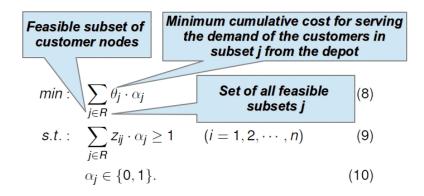
Feasible subset of customer nodes

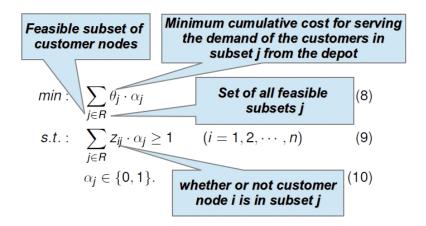
$$\min: \sum_{j \in R} \theta_j \cdot \alpha_j \tag{8}$$

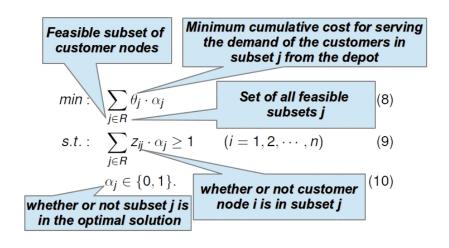
s.t.:
$$\sum_{j\in R} z_{ij} \cdot \alpha_j \ge 1 \qquad (i = 1, 2, \cdots, n)$$
 (9)

$$\alpha_i \in \{0,1\}. \tag{10}$$

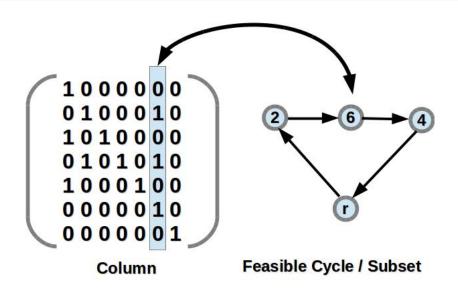




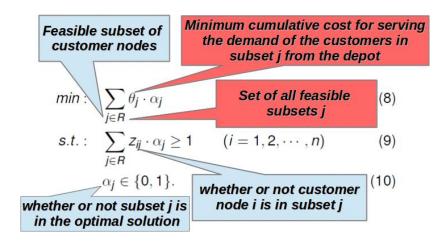




Coefficient Matrix (Z)



Set cover formulation: Two problems

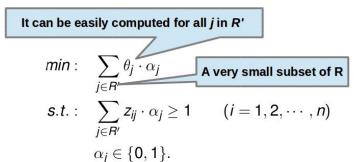


Solution: Restricted Master Problem

min:
$$\sum_{j \in R'} \theta_j \cdot \alpha_j$$
s.t.:
$$\sum_{j \in R'} z_{ij} \cdot \alpha_j \ge 1 \qquad (i = 1, 2, \dots, n)$$

$$\alpha_j \in \{0, 1\}.$$

Restricted Master Problem (RMP)



Pricing Sub-Problem: ERCSPP

$$min: \sum_{i=0}^{n} \sum_{j=0}^{n} ((a \cdot x_{ij} + b \cdot y_{ij})c_{ij}) - \sum_{i=1}^{n} (\pi_i \cdot \sum_{j=0}^{n} x_{ji})$$
 (11)

$$s.t.: \sum_{i=1}^{n} x_{0i} = 1$$
 (12)

$$\sum_{j=1}^{n} x_{j0} = 1 \tag{13}$$

$$\sum_{i=0}^{n} x_{ip} - \sum_{j=0}^{n} x_{pj} = 0 \qquad (p = 1, 2, \dots, n)$$
 (14)

$$\sum_{j=0}^{n} y_{pj} - \sum_{i=0}^{n} y_{ip} = d_p \cdot \sum_{k=0}^{n} x_{kp} \qquad (p = 1, 2, \dots, n)$$
 (15)

$$y_{ij} \leq Q \cdot x_{ij} \qquad (i, j = 1, 2, \cdots, n) \tag{16}$$

$$x_{ij} \in \{0,1\}$$
 $(i,j=0,1,2,\cdots,n)$ (17)

$$y_{ij} \ge 0$$
 $(i, j = 0, 1, 2, \dots, n)$ (18)

Pricing Sub-Problem: ERCSPP

Objective function: reduced cost of a cycle

$$min: \sum_{i=0}^{n} \sum_{j=0}^{n} ((a \cdot x_{ij} + b \cdot y_{ij}) c_{ij}) - \sum_{i=1}^{n} (\pi_i \cdot \sum_{j=0}^{n} x_{ji})$$
 (11)

s.t.:
$$\sum_{j=1}^{n} x_{0j} = 1$$
$$\sum_{j=1}^{n} x_{j0} = 1$$
 (12)

$$\sum_{i=1}^{n} x_{j0} = 1 \qquad (13)$$

$$\sum_{i=0}^{n} x_{ip} - \sum_{i=0}^{n} x_{pj} = 0 \qquad (p = 1, 2, \dots, n)$$
 (14)

$$\sum_{i=0}^{n} y_{pj} - \sum_{i=0}^{n} y_{ip} = d_{p} \cdot \sum_{k=0}^{n} x_{kp} \qquad (p = 1, 2, \dots, n)$$
 (15)

$$y_{ij} \leq Q \cdot x_{ij} \qquad (i, j = 1, 2, \cdots, n) \tag{16}$$

$$x_{ij} \in \{0,1\}$$
 $(i,j=0,1,2,\cdots,n)$ (17)

$$y_{ij} \ge 0$$
 $(i, j = 0, 1, 2, \dots, n)$ (18)

Pricing Sub-Problem: ERCSPP

Objective function: reduced cost of a cycle

min:
$$\sum_{i=0}^{n} \sum_{j=0}^{n} ((a \cdot x_{ij} + b \cdot y_{ij}) c_{ij}) - \sum_{i=1}^{n} (\pi_i \cdot \sum_{j=0}^{n} x_{ji})$$
 (11)

s.t.:
$$\sum_{j=1}^{n} x_{0j} = 1$$

 $\sum_{j=1}^{n} x_{j0} = 1$

s.t.: $\sum_{j=1}^{n} x_{0j} = 1$ Single cycle: one outgoing edge from the depot, and one incoming edge into the depot.

$$\sum_{i=0}^{n} x_{ip} - \sum_{i=0}^{n} x_{pj} = 0 \qquad (p = 1, 2, \dots, n)$$
 (14)

$$\sum_{i=0}^{n} y_{pj} - \sum_{i=0}^{n} y_{ip} = d_{p} \cdot \sum_{k=0}^{n} x_{kp} \qquad (p = 1, 2, \dots, n)$$
 (15)

$$y_{ij} \leq Q \cdot x_{ij} \qquad (i, j = 1, 2, \cdots, n) \tag{16}$$

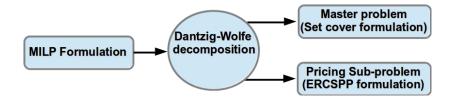
$$x_{ij} \in \{0,1\}$$
 $(i,j=0,1,2,\cdots,n)$ (17)

$$y_{ij} \ge 0$$
 $(i, j = 0, 1, 2, \dots, n)$ (18)

(12)

(13)

Dantzig-Wolfe decomposition (1960)



$$\begin{aligned} & \textit{min}: & \sum_{j \in R'} \theta_j \cdot \alpha_j \\ & \textit{s.t.}: & \sum_{j \in R'} z_{ij} \cdot \alpha_j \geq 1 \qquad (i = 1, 2, \cdots, n) \\ & \alpha_i \in \{0, 1\}. \end{aligned}$$

Restricted Master Problem: Set cover formulation

$$\begin{aligned} & \textit{min}: & \sum_{i=0}^{n} \sum_{j=0}^{n} ((a \cdot x_{ij} + b \cdot y_{ij}) c_{ij}) - \sum_{i=1}^{n} (\pi_i \cdot \sum_{j=0}^{n} x_{ji}) \\ & \textit{s.t.}: & \sum_{j=1}^{n} x_{0j} = 1 \\ & \sum_{j=1}^{n} x_{j0} = 1 \\ & \sum_{i=0}^{n} x_{ip} - \sum_{j=0}^{n} x_{pj} = 0 \\ & \sum_{i=0}^{n} y_{pj} - \sum_{i=0}^{n} y_{ip} = d_p \cdot \sum_{k=0}^{n} x_{kp} \quad (p = 1, 2, \cdots, n) \\ & y_{ij} \leq Q \cdot x_{ij} \quad (i, j = 1, 2, \cdots, n) \\ & x_{ij} \in \{0, 1\} \quad (i, j = 0, 1, 2, \cdots, n) \\ & y_{ij} \geq 0 \quad (i, j = 0, 1, 2, \cdots, n) \end{aligned}$$

Pricing Sub-Problem: ERCSPP

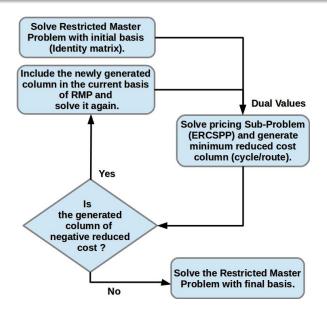
Algorithms

Column Generation: Produce fractional solution.

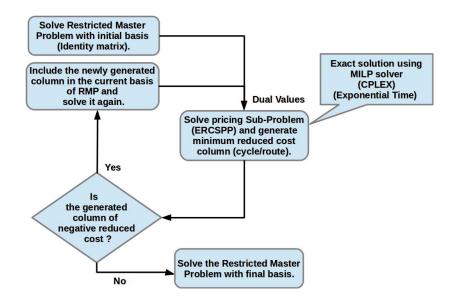
Dynamic Programming : Solve pricing sub-problem

 Randomized Rounding: Generating integral solution from fractional solution.

Column Generation



Column Generation



Column Generation



Simulation Results

• Three different cases for values of (a, b):

•
$$a = 1, b = 0$$

•
$$a = 0, b = 1$$

- a = 1, b = Q
- Instances: [A-set, B-set, P-set, E-set, and RY-instance]¹.
- MILP formulation for the sub-problem was also solved using CPLEX MILP solver.
- Average cost of the integral solution obtained over 20 rounding.
- Time-out: 3 Hours.

¹ http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances

Table : CVRP's (a = 1, b = 0) and instances from E-set

Instances	Q	CVRP			MILP					DP			Avg	Avg Fact
		OPT	LB	NOC	TT	DT	SPT	LB	NOC	TT	DT	SPT	R-value	_
E-n7	3		100.00	3	0.9	0.3	0.6	100.00	3	0.3	0.3	0.0	116.20	
E-n13-k4	6000	247	247.00	23	10.3	0.5	9.8	247.00	23	60.5	0.4	60.0	247.00	1.00
E-n22-k4	6000	375	373.71	37	48.4	0.7	47.7	373.71	40	634.0	0.7	633.3	412.75	1.10
E-n23-k3	4500	569	558.95	62	340.0	1.3	338.6	558.95	73	1034.8	1.6	1033.2	749.80	1.32
E-n30-k(3, 4)	4500	534	484.10	112	6954.1	3.0	6951.1	484.10	103	3539.4	2.4	3536.9	692.15	1.30
E-n31-k7	140	379	309.00	43	65.7	0.8	64.8	309.00	49	46.8	0.9	45.8	643.80	1.70
E-n33-k4	8000	835												
E-n51-k5	160	521	517.06	284	8154.2	34.5	8119.5	517.08	309	1840.7	47.7	1792.9	685.60	1.32
E-n76-k7	220	682												
E-n76-k8	180	735												
E-n76-k10	140	830						812.45	397	7013.9	65.9	6947.9	1140.60	1.37
E-n76-k(14,15)	100	1021						1002.75	283	3408.8	15.9	3392.8	1412.55	1.38
E-n101-k8	200	815												
E-n101-k14	112	1071												

LB: Cost of the fractional solution to the master problem

Avg R-value: Average integral cost after rounding.

NOC: Number of columns (generated).

TT: Total time, DT: Dual time, SPT: Sub-problem time.

Theoretical bound of 2.5 by Altinkemer and Gavish (1990) $[2+\epsilon]$ in case of Euclidean CVRP].

Table : CMLP's (a = 0, b = 1) and instances from E-set

Instances	Q			MILP					DP			Avg
		LB	NOC	TT	DT	SPT	LB	NOC	TT	DT	SPT	R-value
E-n7	3	72.00	2	0.5	0.3	0.2	72.00	2	0.1	0.0	0.0	76.00
E-n13-k4	6000	429400.00	5	2.1	0.3	1.7	429400.00	5	15.1	0.1	15.1	429400.00
E-n22-k4	6000	628700.00	1	0.9	0.2	0.6	628700.00	1	30.9	0.0	30.9	628700.00
E-n23-k3	4500	407318.00	1	1.0	0.2	0.7	407318.00	1	28.3	0.2	28.0	407318.00
E-n30-k(3, 4)	4500	577025.00	3	2.7	0.3	2.4	577025.00	3	136.5	0.3	136.1	577025.00
E-n31-k7	140	10071.00	42	90.1	0.7	89.3	10071.00	44	41.8	0.5	41.2	14536.00
E-n33-k4	8000	2296050.00	8	12.6	0.3	12.2	2296050.00	11	960.9	0.4	960.5	2296050.00
E-n51-k5	160	18017.00	3	7.6	0.3	7.3	18017.00	3	23.5	0.3	23.2	18017.00
E-n76-k7	220	32010.00	3	43.0	0.3	42.7	32010.00	7	224.8	0.1	224.6	32010.00
E-n76-k8	180	32010.00	3	40.8	0.3	40.5	32010.00	7	183.1	0.3	182.7	32010.00
E-n76-k10	140	32010.00	4	40.3	0.3	40.0	32010.00	7	139.9	0.4	139.5	32010.00
E-n76-k(14,15)	100	32010.00	3	23.7	0.3	23.4	32010.00	7	96.6	0.3	96.2	32010.00
E-n101-k8	200						36614.00	20	1257.0	0.5	1256.5	37043.45
E-n101-k14	112						36614.00	20	690.2	0.2	690.0	36969.55

Most of the time : Objective function = sum of the shortest path from depot to each client

Table : Cu-VRP's (a = Q, b = 1) and instances from E-set

Instances	Q			MILP			Avg					
		LB	NOC	TT	DT	SPT	LB	NOC	TT	DT	SPT	R-value
E-n7	3	388.00	2	0.5	0.2	0.2	388.00	2	0.3	0.3	0.0	456.00
E-n13-k4	6000	2067300.00	19	8.0	0.4	7.5	2067300.00	19	50.5	0.4	50.0	2067300.00
E-n22-k4	6000	3123000.00	38	50.4	0.7	49.7	3129800.00	31	495.1	0.6	494.5	3336200.00
E-n23-k3	4500	3243577.00	51	1084.3	1.0	1083.3	3243577.00	26	377.3	0.5	376.7	3243577.00
E-n30-k(3, 4)	4500						2992922.06	50	1735.6	1.0	1734.5	3368842.50
E-n31-k7	140	58766.00	41	91.9	8.0	91.1	58766.00	44	42.1	0.8	41.3	147134.85
E-n33-k4	8000											
E-n51-k5	160						116705.95	267	1576.7	26.3	1550.3	155593.95
E-n76-k7	220											
E-n76-k8	180						182427.33	459	10617.0	124.0	10492.9	261691.30
E-n76-k10	140						160979.54	336	5917.6	32.2	5885.3	234395.35
E-n76-k(14,15)	100						141236.88	261	3142.7	10.8	3131.8	187975.15
E-n101-k8	200											
E-n101-k14	112											

Theoretical bound of 4 by Gaur et al. (2013) [3.414 $+ \epsilon$ in case of Euclidean Cu-VRP].

Notations: Integrality Gap Analysis for Equal-weight case

- C*: An optimal traveling salesperson tour.
- Q: Capacity of the vehicle.
- d_i: Distance between vertex i and the depot.
- X_{eq}^* : Cost of the optimal integral solution.
- X_{eq}^{LP} : Cost of the optimal fractional solution.
- X_{eq}^{ITP} : Fuel consumption on the solution tour from Gaur et al. (2013).
- Z^{LP}_{eq}: Cost of the optimal fractional solution to the corresponding CVRP instance.

Integrality Gap

$$\frac{X_{eq}^*}{X_{eq}^{LP}} \le ?$$

Similar to the Bramel and Simchi-Levi's analysis for CVRP in the book by Toth and Vigo (2001)

Upper bound on X_{eq}^st

Theorem 1

[Gaur et al., 2013] Let $\beta > 0$ be a positive rational number. Then, there exists a cluster partition $P = [1, i_1, i_2, \dots, i_{k-1}, n]$ using ITP of C^* with total fuel consumption

$$X_{eq}^{ITP} \leq \left(1 + \frac{2}{\beta}\right) \cdot b \cdot \left(\sum_{i=1}^{n} d_i\right) + \left(1 + \frac{\beta}{2}\right) a|C^*| + 2a \frac{\sum_{i=1}^{n} d_i}{Q}.$$

$$\tag{19}$$

It is trivial to note that $X_{eq}^* \le X_{eq}^{ITP}$. So, we get:

$$X_{eq}^* \le \left(1 + \frac{2}{\beta}\right) \cdot b \cdot \left(\sum_{i=1}^n d_i\right) + \left(1 + \frac{\beta}{2}\right) a |C^*| + 2a \frac{\sum_{i=1}^n d_i}{Q}.$$
 (20)

Lower Bounds for X_{eq}^{LP}

$$X_{eq}^{LP} \ge a \cdot Z_{eq}^{LP} + b \left(\sum_{i=1}^{n} d_i \right).$$
 (21)

Using $Z_{eq}^{LP} \geq \frac{2}{Q} \sum_{i=1}^{n} d_i$, due to the lower bound given by Haimovich and Rinnooy Kan (1985) for CVRP, we can rewrite:

$$X_{eq}^{LP} \ge a \cdot \frac{2}{Q} \sum_{i=1}^{n} d_i + b \left(\sum_{i=1}^{n} d_i \right). \tag{22}$$

Using $|C^*| \leq \frac{3}{2} Z_{eq}^{LP}$ due to Held and Karp (1970), we can get:

$$a \cdot |C^*| + \frac{3}{2}b\left(\sum_{i=1}^n d_i\right) \le \frac{3}{2}X_{eq}^{LP}.$$
 (23)

Worst Case Bound on Integrality Gap: Equal Weight Case

Now, we re-write the equation (20) as:

$$X_{eq}^* \leq \left[2a \cdot \frac{\sum_{i=1}^n d_i}{Q} + b \cdot \left(\sum_{i=1}^n d_i\right)\right] + max[\frac{2}{3} \cdot \frac{2}{\beta}, 1 + \frac{\beta}{2}] \cdot \left[a|C^*| + b \cdot \left(\sum_{i=1}^n d_i\right)\right]$$

or using equation (22) and equation (23), we can write:

$$X_{eq}^* \leq X_{eq}^{LP} + \frac{3}{2} \cdot max[\frac{4}{3\beta}, 1 + \frac{\beta}{2}] \cdot X_{eq}^{LP}$$

or

$$\frac{X_{eq}^*}{X_{eq}^{LP}} \le 1 + \frac{3}{2} \cdot max[\frac{4}{3\beta}, 1 + \frac{\beta}{2}]$$
 (24)

A minimum factor can be obtained for $\beta>0$, when $\frac{4}{3\beta}=1+\frac{\beta}{2}$ or $\beta=\frac{\sqrt{33}}{3}-1$, that results :

$$\frac{X_{eq}^*}{X_{eq}^{LP}} \le 3.18614 \tag{25}$$

Worst Case Bound on Integrality Gap: Unequal Weight Case

Similar to the equation (24) for equal demands case, we can get following equation for unequal weights case:

$$\frac{X_{uneq}^*}{X_{uneq}^{LP}} \le 2 + \frac{3}{2} \cdot max[\frac{3}{2} \cdot (\frac{2}{\beta} - 1), 1 + \frac{\beta}{2}]$$
 (26)

A minimum factor can be obtained for $\beta > 0$, when $\frac{3}{2} \cdot (\frac{2}{\beta} - 1) = 1 + \frac{\beta}{2}$ or $\beta = \frac{2}{3}$, that results :

$$\frac{X_{uneq}^*}{X_{uneq}^{LP}} \le 4 \tag{27}$$

Conclusion

- Empirically evaluation of the performance of column generation based approximation algorithm for the cumulative VRP.
- Solved a set cover type formulation for the cumulative VRP problem using column generation.
- Simulation results are better than the worst-case bounds on the approximation algorithms developed using the ITP technique due to Gaur et al. (2013).
- Scalability: branch cut and price based approach Vs our approach.

Future Work

- Theoretical bounds on the approximability of DP.
- Better than O(log n) factor analysis for the integral solution due to rounding.
- Other factors affecting the fuel consumption such as traffic congestion, road inclination, aerodynamic drag, engine characteristics of the vehicle etc. can be considered for complex modeling.
- The approximability of cumulative VRPs when the number of offloadings allowed is given as input, remains an open question.

References I

- K. Altinkemer and B. Gavish, Techincal Note: Heuristics for Delivery Problems with Constant Error Guarantees, Transportation Science, 24 (4), 294–297, 1990.
- [2] M. Haimovich and A. Rinooy Kan Bounds and Heuristics for Capacitated Routing Problems, Math. Opns. Res., 10 (4), 527–542, 1985.
- [3] Kara, İ., Kara, B. Y., and Yetiş, M. K., Cumulative Vehicle Routing Problems, Vehicle Routing Problem, Edited by Caric, T., and Gold, H., I-Tech Education and Publishing KG, Vienna, Austria, 2008, pp. 85–98.
- [4] Kara, İ., Yetiş, B.K., and Yetiş, K., Energy Minimizing Vehicle Routing Problem, A. Press, Y. Xu and B. Zhu (Ed.) COCOA 2007, LNCS 4616, pp. 62–71, 2007.
- [5] Xiao Y., Zhao Q., Kaku I., and Xu Y., Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers & Operations Research 39, 7 (2012), 1419 – 1431.
- [6] Sahin B., Yilmaz H., Ust Y., Guneri A. F., and Gulsun B., An approach for analysing transportation costs and a case study. European Journal of Operational Research 193 (2009), 1–11.
- [7] Demir E., Bektaş T., and Laporte G., A comparative analysis of several vehicle emission models for road freight transportation, Transportation Research Part D: Transport and Environment, Volume 16, Issue 5, pp. 347–357, July 2011.
- [8] Newman P. W. G., Alimoradian B., and Lyons T. J., Estimating fleet fuel consumption for vans and small trucks, Transportation Science, 23:46–50, 1989.

References II

[9] Dantzig G. B., and Ramser J. H., The truck dispatching problem. Management Science 6, 1 (1959), 80–91.

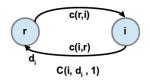
- [10] Blum A., Chalasani P., Coppersmith D., Pulleyblank W. R., Raghavan P., and Sudan M. The minimum latency problem. In STOC (1994), pp. 163–171.
- [11] Gaur D. R., Mudgal A., Singh R. R., Routing vehicles to minimize fuel consumption. Operations Research Letters, Volume 41, Issue 6, November 2013, Pages 576-580.
- [12] Dantzig G. B., Wolfe P., Decomposition principle for linear programs, Operations research, 8(1), 101-111, 1960.
- [13] Michael Held, and Richard M. Karp. The traveling-salesman problem and minimum spanning trees. Operations Research 18.6 (1970): 1138-1162.
- [14] Lysgaard J., Wohlk S., A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem, European Journal of Operational Research, available online, August 2013.
- [15] Balinski M. L., Quandt R. E., On an integer program for a delivery problem, Operations Research, 12:300304, 1964.

Some Notations: Dynamic Program (DP)

Similar to the Dynamic Program due to Lysgaard and Wohlk (2013).

- *Elementary route*: cycle starts at the depot (*r*) and ends at the depot (*r*) without re-visiting any node.
- C(i, q, x): the cost of the minimal cost route that collects q units of goods, visits a total of x clients and the last node visited before returning to the depot is client i.
- R(i, q, x): the route that achieves this minimal cost. Note that there might be more than one route which attains the minimal cost.
- c(r, i): the shortest distance between the depot r and node i.
- y_i : the dual value associated with client i.

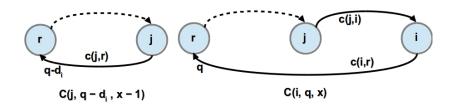
Dynamic Programming for Pricing Sub-Problem



Initialization:

For
$$i \in [1..n]$$
, $q \in [d_1, d_2, ..., d_n]$, and $x = 1$
$$C(i, q, x) = a.c(r, i) + (a + b.d_i).c(i, r) - y_i$$

Dynamic Programming for Pricing Sub-Problem



Updation:

$$C(i,q,x) = \min_{j \neq i, i \notin B(j,q-d_i,x-1)} \left\{ \begin{array}{l} C(j,q-d_i,x-1) - (a+b(q-d_i))c(j,r) + \\ (a+b(q-d_i))c(j,i) + (a+b,q)c(i,r) - y_i \end{array} \right\}$$

R(i, q, x) has to be updated accordingly.

Analysis of DP

- Time Complexity: $O(n^3Q)$.
- Recurrence relation does not consider all the paths.
- Principle of optimality may not hold for the recurrence relation.
- We get a *minimal* reduced cost column: an approximate solution to the pricing sub-problem
- The paths returned by the dynamic programming algorithm are close to the optimal: evidence by simulations.

Rounding Algorithm

Algorithm 1 RA

```
1: (Input) Solution (x, A) from CG algorithm.

2: Start with an empty set of cycles S.

3: while S is not a feasible cover (every customer is in some cycle) do

4: Round all the fractional solution X to 1 with probability X(i).

5: Add all the cycles (columns) with rounded X(i) = 1 to S.

6: end while

7: Take the cycles in S in a random order \{S_1, S_2, \cdots, S_k\}.

8: for i = 1 to k do

9: if S \setminus \{S_i\} is a feasible cover then

10: Remove cycle S_i from S.

11: end if
```

Rounding Algorithm

Algorithm 1 RA

```
1: (Input) Solution (x, A) from CG algorithm.
2: Start with an empty set of cycles S.
3: while S is not a feasible cover (every customer is in some cycle) do
      Round all the fractional solution x to 1 with probability x(i).
      Add all the cycles (columns) with rounded x(i) = 1 to S.
6 end while
7: Take the cycles in S in a random order \{S_1, S_2, \dots, S_k\}.
8: for i = 1 to k do
                                                     Reverse delete
      if S \setminus \{S_i\} is a feasible cover then
                                                            step
         Remove cycle S_i from S.
10:
      end if
11:
12: end for
```