Associativity for Binary Parallel Processes: a Quantitative Study

Olivier Bodini¹, Antoine Genitrini², Frederic Peschanski² and Nicolas Rolin¹

 1 Université Paris 13 – LIPN

²UPMC Paris - LIP6

CALDAM 2015

Process Trees in Concurrency

Combinatorial Study

Algorithms

Motivation

Model

A minimal formalization of concurrent processes: we study use a sub-algebra of Milner's Calculus of Communicating Systems [Mi80].

Goal

- combinatorial study of concurrent processes
- algorithms tailored for this processes

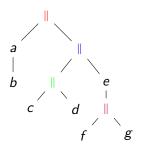
Process grammar

Specification for the processes:

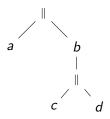
- an atomic action, denoted a, b, c, \ldots is a process,
- the prefixing a.P of an action a followed by a process P is a process,
- the composition $P_1 || P_2$ of exactly two processes P_1 and P_2 , is a process.

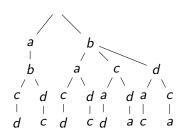
Process trees

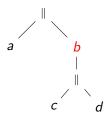
Reinterpretation as process trees.

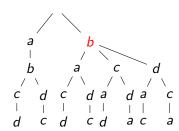


A run is a sequence of all the actions that satisfies precedence constraints.

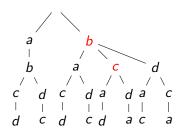


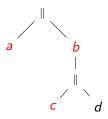




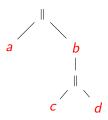


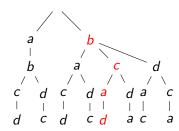












Process Trees in Concurrency

2 Combinatorial Study

3 Algorithms

Class definition

A *combinatorial class* C: is a set of objects, with a size function, denoted by $|\cdot|: C \to \mathbb{N}$ and such that for every integer n, the subset C_n of objects of size n, is finite with cardinality C_n .

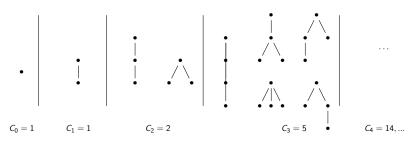


Figure: Catalan trees

Generating function

We define the *ordinary generating function* of a combinatorial class $\mathcal C$ to be:

$$C(z) = \sum_{n \geq 0} C_n z^n,$$

and the exponential generating function of a combinatorial class ${\mathcal C}$ to be:

$$C(z) = \sum_{n \geq 0} C_n \frac{z^n}{n!}.$$

example:

the first terms of the generating function C(z) of the Catalan trees are:

$$C(z) = 1 + z + 2z^2 + 5z^3 + 14z^4 + \dots$$

Symbolic method

We can translate specifications to generating functions automatically

Small dictionary

$$\begin{array}{cccc} \varepsilon & \rightarrow & 1 \\ \mathcal{Z} & \rightarrow & z \\ \mathcal{C} = \mathcal{A} + \mathcal{B} & \rightarrow & \mathcal{C}(z) = \mathcal{A}(z) + \mathcal{B}(z) \\ \mathcal{C} = \mathcal{A} \times \mathcal{B} & \rightarrow & \mathcal{C}(z) = \mathcal{A}(z)\mathcal{B}(z) \\ \mathcal{C} = \mathit{Seq}(\mathcal{A}) & \rightarrow & \mathcal{C}(z) = \frac{1}{1 - \mathcal{A}(z)} \end{array}$$

example: Catalan trees can be specified as :

$$C = \varepsilon + Seq(Z \times C),$$

Hence:

$$C(z)=1+\frac{1}{1-zC(z)}.$$

Process tree

Our process have the following grammar:

$$P = a | a.P | P_1 || P_2.$$

We transform it into a combinatorial specification

$$\mathcal{P} = \mathcal{Z} + \mathcal{Z} \times \mathcal{P} + \mathcal{P} \times \mathcal{P}.$$

Hence the generating function of class of process trees P(z) verifies the following equation:

$$P(z) = z + zP(z) + P(z)^{2}.$$

Process tree

So the generating function is:

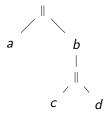
$$P(z) = \frac{1-z-\sqrt{1-6z+z^2}}{2},$$

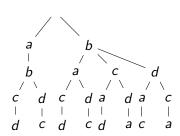
and we have an equivalent for the number of process trees:

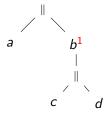
$$P_n \sim_{n \to \infty} \sqrt{\frac{3\sqrt{2}-4}{4~\pi~n^3}} \cdot \left(3-2\sqrt{2}\right)^{-n},$$

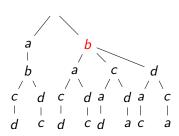
where $(3 - 2\sqrt{2})^{-1} \approx 5.83$.

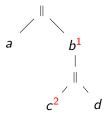
The first terms of the sequence are 1, 2, 6, 22, 90, ...

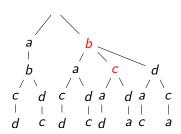


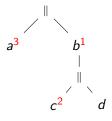


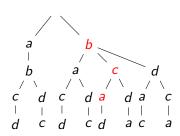


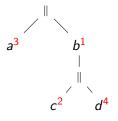


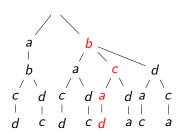












Boxed product

$$C = A \star^{\square} B$$
,

means that $\mathcal C$ is the product of $\mathcal A$ and $\mathcal B$, and that the element with the smallest label is in $\mathcal A$

Its translation to equation is:

$$C = A \star^{\square} B \to C(z) = \int_{v=0}^{v=z} \frac{dA}{dv}(v)B(v)dv.$$

Increasing labeled process

Hence the class of increasing labeled process ${\cal G}$ verifies the following specification:

$$\mathcal{G} = \mathcal{Z} \star^{\square} (\mathcal{G} + 1) + \mathcal{G} \times \mathcal{G},$$

its generating function is:

$$G(z) = -1 - rac{3}{2} \cdot \mathsf{LambertW}\left(-rac{2}{3} \exp\left(rac{z-2}{3}
ight)
ight),$$

where the LambertW-function satisfies:

$$\mathsf{LambertW}(z) \cdot \mathsf{exp}(\mathsf{LambertW}(z)) = z.$$

However we have an equivalent for the number of increasing labeled process:

$$\bar{G}_n \sim_{n \to \infty} 3 \cdot \sqrt{\frac{\ln \frac{3}{2} - \frac{1}{3}}{6\sqrt{2} - 8}} \cdot \left(\frac{3 - 2\sqrt{2}}{3\left(\ln \frac{3}{2} - \frac{1}{3}\right)}\right)^n \cdot n!,$$

where
$$\left(\frac{3-2\sqrt{2}}{3\left(\ln\frac{3}{2}-\frac{1}{3}\right)}\right) \approx 0.79$$
 .

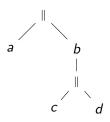


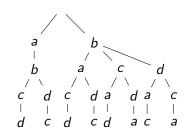
Size of the semantic tree

By using bivariate generating function, we can prove that

$$\bar{L}_n \sim_{n \to \infty} e \cdot \bar{G}_n$$

where \bar{L}_n is the mean total size of the semantic trees.





Process Trees in Concurrency

Combinatorial Study

3 Algorithms

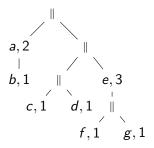
Hook length formula

The number of computations G_P on a given tree P is:

$$G_P = rac{|P|!}{\displaystyle\prod_{P_lpha ext{ prefixed subtree}} |P_lpha|},$$

A prefixed subtree is a subtree with an atomic action as root.

Example



Thus for this example, the hook length formula gives:

$$G_P = \frac{7!}{2 \cdot 1 \cdot 1 \cdot 1 \cdot 3 \cdot 1 \cdot 1} = 840.$$

Uniform generatation of runs

Algorithm

```
Data: T: a weighted process tree of size n
Result : \sigma: a run (a list of nodes)
\sigma := \langle \rangle
\mu := \{ a^{\operatorname{weight}(a)} \} 
                                               # initialize a multiset
for i from n-1 to 1 by -1 do
                                               # invariant: the total weight of \mu is i
     \alpha := \mathsf{sample}(\mu)
                                              # sample an action according to its cardinality
     \sigma := \sigma \cup \langle \alpha \rangle
                                              # append the sampled action
     \mu.weight(\alpha) := 0
                                              \# \alpha cannot be sampled anymore
     \mu := \mu \cup \{ \gamma^{\text{weight}(\gamma)} \mid \gamma \text{ a child of } \alpha \} 
                                               \# insert the children of \alpha in \mu
return \sigma
```

Directly from the Hook Length Formula

Example of prefix generation

Example

$$\sigma := \langle \rangle$$

$$\mu := \{\!\!\{ a, a, c, d, e, e, e \}\!\!\}$$

(a.b) || [(c || d) || (e.(f || g))].

Example of prefix generation

Example

$$\begin{split} \sigma &:= \langle \rangle \\ \mu &:= \{\!\!\{ a,a,c,d,e,e,e \}\!\!\} \\ \alpha &:= e \qquad \qquad \# \text{ happends with probability } 3/7 \\ \sigma &:= \langle e \rangle \\ \mu &:= \{\!\!\{ a,a,c,d,f,g \}\!\!\} \end{split}$$

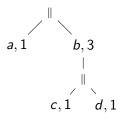
Example of prefix generation

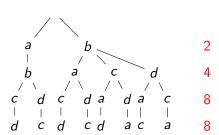
Example

The worst case complexity is $O(n \log n)$

Profile

Calculate the number of nodes for each level of the semantic tree





Profile

Here our process is seen as a specification for run prefixes:

$$P = a \mid\mid (b.(c \mid\mid d)),$$

we derive the combinatorial specification

$$P = \mathcal{Z} \times (\mathcal{Z} \star^{\square} (\mathcal{Z} \times \mathcal{Z})),$$

as we want profiles we add empty trees

$$P = (\mathcal{Z} + \epsilon) \times (\mathcal{Z} \star^{\square} ((\mathcal{Z} + \epsilon) \times (\mathcal{Z} + \epsilon)) + \epsilon),$$

and use our automatic method to deduce an equation:

$$P(z) = (z+1) \left(\int_{t=0}^{t=z} (t+1)(t+1)dt + 1 \right),$$

Profile

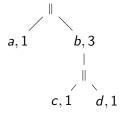
$$P(z) = 1 + 2z + 2z^2 + \frac{4}{3}z^3 + \frac{1}{3}z^4$$

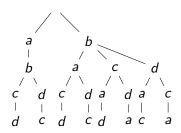
As it is an exponential generating function, we need to multiply z^i by i! to have the number of element.

Hence the profile of P is 1, 2, 4, 8, 8.

The profile can be obtained in linear time.

Uniform sampling of run of prefixes





Uniform run of run of prefixes

$$P = a \mid\mid (b.(c \mid\mid d)),$$

This time we decorate all atomic element with his value:

$$P = \mathcal{Z}_{\mathsf{a}} \times (\mathcal{Z}_{\mathsf{b}} \star^{\square} (\mathcal{Z}_{\mathsf{c}} \times \mathcal{Z}_{\mathsf{d}})).,$$

as we still want profiles we add empty trees

$$P = (\mathcal{Z}_a + \epsilon) \times (\mathcal{Z}_b \star^{\square} ((\mathcal{Z}_c + \epsilon) \times (\mathcal{Z}_d + \epsilon)) + \epsilon),$$

and use the automatic method to deduce an equation:

$$P(z) = (y_a z + 1) \left(\int_{t=0}^{t=z} y_b(y_c t + 1)(y_d t + 1) dt + 1 \right).$$

Uniform run of prefixes

So

$$P(z) = \frac{1}{3} y_a y_b y_c y_d z^4 + \frac{1}{6} (3 y_a y_b y_c + 3 y_a y_b y_d + 2 y_b y_c y_d) z^3$$
$$+ \frac{1}{2} (2 y_a y_b + y_b y_c + y_b y_d) z^2 + (y_a + y_b) z + 1$$

Uniform run of prefixes

 $\textbf{Goal} \colon \mathsf{sample} \ \mathsf{uniformly} \ \mathsf{a} \ \mathsf{run} \ \mathsf{amongst} \ \mathsf{the} \ \mathsf{runs} \ \mathsf{of} \ \mathsf{size} \ \ell$

Algorithm in 3 steps.

choose a set of actions according to its distribution at size ℓ

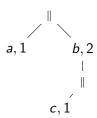
example: $\ell = 3$ and

$$P(z) = \frac{1}{3} y_a y_b y_c y_d z^4 + \frac{1}{6} (3 y_a y_b y_c + 3 y_a y_b y_d + 2 y_b y_c y_d) z^3$$
$$+ \frac{1}{2} (2 y_a y_b + y_b y_c + y_b y_d) z^2 + (y_a + y_b) z + 1$$

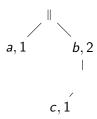
We choose *abc* with probabilty $\frac{3}{8}$, *abd* with probabilty $\frac{3}{8}$ and *bcd* with probabilty $\frac{1}{4}$.

Remove all the unused actions from the tree and remove the \parallel operator on nodes that are no longer binary, it gives you a new process tree sample uniformly a run from that new tree.

Remove all the unused actions from the tree and remove the \parallel operator on nodes that are no longer binary, it gives you a new process tree sample uniformly a run from that new tree.



Remove all the unused actions from the tree and remove the \parallel operator on nodes that are no longer binary, it gives you a new process tree sample uniformly a run from that new tree.



Remove all the unused actions from the tree and remove the \parallel operator on nodes that are no longer binary, it gives you a new process tree sample uniformly a run from that new tree.

sample an uniform run from the tree of the 2nd step

example:

Conclusion

We have:

- An asymptotic analysis of the semantic tree: mean number of nodes and number of leaves
- An efficient algorithm to generate runs uniformly
- An efficient algorithm to compute the profile of a semantic tree
- An efficient algorithm to generate run prefixes uniformly

Thanks for your attention

Backup slide

```
Data: T: a weighted process tree of size n
Result : \sigma: a run (a list of nodes)
\sigma := \langle \rangle
\mu := \{ \{ a^{\operatorname{weight}(a)} \} \}
                                              # initialize a multiset
for i from n-1 to 1 by -1 do
                                              # invariant: the total weight of \mu is i
     \alpha := \mathsf{sample}(\mu)
                                              # sample an action according to its cardinality
     \sigma := \sigma \cup \langle \alpha \rangle
                                             # append the sampled action
     \mu.weight(\alpha) := 0
                                  \# \ lpha cannot be sampled anymore
     \mu := \mu \cup \{ \gamma^{\text{weight}(\gamma)} \mid \gamma \text{ a child of } \alpha \} 
                                              # insert the children of \alpha in \mu
return \sigma
```