Associativity for Binary Parallel Processes:
a Quantitative Study

Olivier Bodini!, Antoine Genitrini?, Frederic Peschanski? and
Nicolas Rolin?

LUniversité Paris 13 — LIPN

2UPMC Paris — LIP6

CALDAM 2015

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

@ Process Trees in Concurrency

© Combinatorial Study

© Algorithms

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 2/32

Process Trees in Concurrency

Motivation

A minimal formalization of concurrent processes: we study use a
sub-algebra of Milner’'s Calculus of Communicating Systems [Mi80].

@ combinatorial study of concurrent processes

@ algorithms tailored for this processes

A,

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 3/32

Process Trees in Concurrency

Process grammar

Specification for the processes:

@ an atomic action, denoted a, b, c,... is a process,
@ the prefixing a.P of an action a followed by a process P is a process,

@ the composition P; || P> of exactly two processes P; and P, is a
process.

N. ROLIN (Université Paris 13 — LIPN) Associ y for Binary Parallel Processes CALDAM 2015 4 /32

Process Trees in Concurrency
Process trees

Reinterpretation as process trees.

(a-b)[[[(c11d)[| (e(F1l&))]

ll
a/ \II

| VRN
b e

A run is a sequence of all the actions that satisfies precedence constraints.

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 5/32

Process Trees in Concurrency
Semantic trees

To express all the possible runs, we can also draw the semantic tree, in
which every path to a leaf is a run. However the size grow exponentially
with the size of the process tree, it is known as the combinatorial explosion
[CGP99].

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 6 /32

Process Trees in Concurrency
Semantic trees

To express all the possible runs, we can also draw the semantic tree, in
which every path to a leaf is a run. However the size grow exponentially
with the size of the process tree, it is known as the combinatorial explosion
[CGP99].

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 6 /32

Process Trees in Concurrency
Semantic trees

To express all the possible runs, we can also draw the semantic tree, in
which every path to a leaf is a run. However the size grow exponentially
with the size of the process tree, it is known as the combinatorial explosion
[CGP99].

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 6 /32

Process Trees in Concurrency
Semantic trees

To express all the possible runs, we can also draw the semantic tree, in
which every path to a leaf is a run. However the size grow exponentially
with the size of the process tree, it is known as the combinatorial explosion
[CGP99].

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 6 /32

Process Trees in Concurrency
Semantic trees

To express all the possible runs, we can also draw the semantic tree, in
which every path to a leaf is a run. However the size grow exponentially
with the size of the process tree, it is known as the combinatorial explosion
[CGP99].

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 6 /32

Combinatorial Study

© Combinatorial Study

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 7/32

Combinatorial Study
Class definition

A combinatorial class C: is a set of objects, with a size function, denoted
by | - | : C — N and such that for every integer n, the subset C,, of objects

of size n, is finite with cardinality C,.

L[] L] L[] 0/ \.
: Lo, SN
' . AN .
SN
G=1 G=1 G=2 G=5 Co=14,..

Figure : Catalan trees

CALDAM 2015

Associativity for Binary Parallel Processes

N. ROLIN (Université Paris 13 — LIPN)

Combinatorial Study
Generating function

We define the ordinary generating function of a combinatorial class C to

be:
C(z) = Z Chz",

n>0

and the exponential generating function of a combinatorial class C to be:

Clz) =) Cni—';.

n>0

example:
the first terms of the generating function C(z) of the Catalan trees are:

C(z)=1+2z+22° +52° 4142 + ...

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 9 /32

Combinatorial Study
Symbolic method

We can translate specifications to generating functions automatically

Small dictionary

e — 1
zZ — z
C=A+B — C((z)=A(z)+ B(2)
C=AxB — C((z)=A(z)B(z2)
C=S5eq(A) — C(C(z2)= #M

example: Catalan trees can be specified as :
C=c¢+Seq(Z x (),

Hence:

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Combinatorial Study
Process tree

Our process have the following grammar :
P=alaP|P| P,
We transform it into a combinatorial specification
P=Z+ZxP+PxP.

Hence the generating function of class of process trees P(z) verifies the
following equation:

P(z) =z+ zP(z) + P(z)2.

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 11/ 32

Combinatorial Study
Process tree

So the generating function is:

1—z—+1—6z+ 22
2 b

P(z) =

and we have an equivalent for the number of process trees:

Pn ~n—o0 \/ 34_/; n34 (3 2\[)

-1
where (3-2v2) ~5.83.
The first terms of the sequence are 1,2,6,22,90, ...

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Combinatorial Study
Increasing tree

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Combinatorial Study
Increasing tree

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Combinatorial Study
Increasing tree

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Combinatorial Study
Increasing tree

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Combinatorial Study
Increasing tree

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Combinatorial Study

Boxed product

C=A+" B,

means that C is the product of A and B, and that the element with the
smallest label is in A
Its translation to equation is:

v=2z

C=A+"B = C(z) = / 2 ()B(v)dv.
v=0

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 14 / 32

Combinatorial Study
Increasing labeled process

Hence the class of increasing labeled process G verifies the following
specification:

G=Z+(G+1)+Gxg,

its generating function is:

3 2 -2
G(z):—1—7 LambertW <—exp (Z >) ,
3 3
where the LambertW-function satisfies:

LambertW(z) - exp(LambertW(z)) = z.

However we have an equivalent for the number of increasing labeled

process:
31 _ !
E';n ~nsoo 3 |n2 3.] 2\/5 'n!,
3(n§-1)

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Combinatorial Study
Size of the semantic tree

By using bivariate generating function, we can prove that

Ln ~p—oo € Gna

where L, is the mean total size of the semantic trees.

RN /\
a b a b

I b a Cc d

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms

© Algorithms

N. ROLIN (Université is 13 — LIPN) iativi inary Parallel Processes CALDAM 2015 17 / 32

Algorithms

Hook length formula

The number of computations Gp on a given tree P is:

P!
GP:)
|Pal

P, prefixed subtree

A prefixed subtree is a subtree with an atomic action as root.

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms
Example

a,?2 Il
\ / N\
b,1 Il e3
/ AN |
c,1 d,1 |
/ AN
f,1 gl

Thus for this example, the hook length formula gives:

7!

= = 840.
2-1-1-1-3-1-1 840

Gp

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms

Uniform generatation of runs

Algorithm

Data : T: a weighted process tree of size n
Result : o: a run (a list of nodes)
o= ()

W= {{aweight(a)}
for i fromn—1 to 1 by -1 do

a :=sample(p)

o:=0cU(a)

p.weight(a) :==0

= U fyveight() | 5y a child of o}

return o

Directly from the Hook Length Formula

CALDAM 2015

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes

20 / 32

Algorithms

Example of prefix generation

(a-b) [|[(c (| d) [| (e-(F I &))]-

()

g
w:={a, ac,deece}

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 21/ 32

Algorithms

Example of prefix generation

(a-b) [[(c [d)[I (e(F Il)]

T Q9 2 &® Q
i ..

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 21/ 32

Algorithms

Example of prefix generation

(a-b) [[(c [d)[I (e(F Il)]

TAQQT ALTQ
[l
/-~
\'QJ
\’m
“ﬁ
aQ
\"'\
0
=

The worst case complexity is O(nlog n)

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 21 /32

Algorithms
Profile

Calculate the number of nodes for each level of the semantic tree

Il
1/ N / N\
) b73 a
? ‘ /b\

I b a c d
AN VAN
d ¢ da da c

\ \ \
C C ac a

o o B~ N

c c a
\ \ \
d d d

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 22 /32

Algorithms
Profile

Here our process is seen as a specification for run prefixes:
P = al[(b.(c]|d)),
we derive the combinatorial specification
P=2x (2+7(2 x 2)),
as we want profiles we add empty trees
P=(Z+¢€) x (Z+x7((Z+€) x (Z2+¢€)+e),

and use our automatic method to deduce an equation:

t=z

\

P(z)=(z+1) ((t+1)(t+1)dt+1),
t

=0

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms
Profile

4 1
P(z):1—|—22+222+§z3+§z4

As it is an exponential generating function, we need to multiply z' by il to
have the number of element.

Hence the profile of P is 1,2,4,8,8.

The profile can be obtained in linear time.

N. ROLIN (Université Paris 13 — LIPN)

Associativity for Binary Parallel Processes CALDAM 2015 24 / 32

Algorithms
Uniform sampling of run of prefixes

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms
Uniform run of run of prefixes

P = al|(b.(c|d)),

This time we decorate all atomic element with his value:
P=2Z,x (Z2o+" (Zc x Zq)).,
as we still want profiles we add empty trees
P=(Z,+¢€) x (Zp+x2 ((Zc+€) x (Z4+¢€)+e),
and use the automatic method to deduce an equation:

P(z) = (yaz + 1) (/ Yo(yet +1)(yat + 1)dt + 1) .

t=0

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms
Uniform run of prefixes

So

1
P(z) = 3 = YaybyeYaZt + = (3Yaypye + 3 YaYbyd + 2VbyeYd) Z°

6(

(2yayb + YbYe + YoYd) 22 + (Va + yb)z + 1

r\.)\l—l

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 27 / 32

Algorithms

Uniform run of prefixes

Goal: sample uniformly a run amongst the runs of size £

Algorithm in 3 steps.

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 28 / 32

Algorithms
Uniform run of prefixes: 1st step

choose a set of actions according to its distribution at size ¢

example: /=3 and

1

1
P(z) =3 YaybyeydZ" + ¢ (3Yaybye +3YaybYa +2ybYeya) 2

1
+5 (20ays + yo¥e + yo¥a) 24+ (yatyp)z+1

We choose abc with probabilty %, abd with probabilty % and bcd with
probabilty %.

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 29 / 32

Algorithms
Uniform run of prefixes: 2nd step

Remove all the unused actions from the tree and remove the || operator on
nodes that are no longer binary, it gives you a new process tree sample
uniformly a run from that new tree.

example: with the triplet abc:

/N
a1l b,3

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms
Uniform run of prefixes: 2nd step

Remove all the unused actions from the tree and remove the || operator on
nodes that are no longer binary, it gives you a new process tree sample
uniformly a run from that new tree.

example: with the triplet abc:

/N
a1 b,?2

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms
Uniform run of prefixes: 2nd step

Remove all the unused actions from the tree and remove the || operator on
nodes that are no longer binary, it gives you a new process tree sample
uniformly a run from that new tree.

example: with the triplet abc:

/N
a1 b,?2
\

c1

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms
Uniform run of prefixes: 2nd step

Remove all the unused actions from the tree and remove the || operator on
nodes that are no longer binary, it gives you a new process tree sample
uniformly a run from that new tree.

example: with the triplet abc:

I
VRN
a1 b,2

\

c 1

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms

Uniform run of prefixes: 3rd step

sample an uniform run from the tree of the 2nd step

example:

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015

Algorithms
Conclusion

We have:
@ An asymptotic analysis of the semantic tree: mean number of nodes
and number of leaves
o An efficient algorithm to generate runs uniformly
@ An efficient algorithm to compute the profile of a semantic tree

o An efficient algorithm to generate run prefixes uniformly

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 32 /32

Algorithms

Thanks for your attention

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes CALDAM 2015 32 /32

Algorithms
Backup slide

Data : T: a weighted process tree of size n
Result : o: a run (a list of nodes)

o =)

pi= {aweight(a)}}

for i fromn—1to 1 by-1do

o :=sample(p)

o:=ocU{a)

p.weight(a) :==0

o= U fyveieht) | 5 a child of o}

return o

CALDAM 2015 32 /32

N. ROLIN (Université Paris 13 — LIPN) Associativity for Binary Parallel Processes

	Process Trees in Concurrency
	Combinatorial Study
	Algorithms

