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Process Trees in Concurrency

Motivation

Model
A minimal formalization of concurrent processes: we study use a
sub-algebra of Milner’s Calculus of Communicating Systems [Mi80].

Goal
combinatorial study of concurrent processes
algorithms tailored for this processes
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Process Trees in Concurrency

Process grammar

Specification for the processes:

an atomic action, denoted a, b, c, . . . is a process,

the prefixing a.P of an action a followed by a process P is a process,

the composition P1 ||P2 of exactly two processes P1 and P2, is a
process.
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Process Trees in Concurrency

Process trees

Reinterpretation as process trees.

(a.b) || [(c || d) || (e.(f || g))].

‖

a

b

‖

‖

c d

e

‖

f g

A run is a sequence of all the actions that satisfies precedence constraints.
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Process Trees in Concurrency

Semantic trees

To express all the possible runs, we can also draw the semantic tree, in
which every path to a leaf is a run. However the size grow exponentially
with the size of the process tree, it is known as the combinatorial explosion
[CGP99].
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Combinatorial Study

Class definition

A combinatorial class C: is a set of objects, with a size function, denoted
by | · | : C → N and such that for every integer n, the subset Cn of objects
of size n, is finite with cardinality Cn.

•

C0 = 1

•

•

C1 = 1

•

•

•

•

• •

C2 = 2

•

•

•

•

•

•

• •

•

•• •

•

• •

•

•

• •

•C3 = 5

· · ·

C4 = 14, ...

Figure : Catalan trees
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Combinatorial Study

Generating function

We define the ordinary generating function of a combinatorial class C to
be:

C(z) =
∑
n≥0

Cnzn,

and the exponential generating function of a combinatorial class C to be:

C(z) =
∑
n≥0

Cn
zn

n!
.

example:
the first terms of the generating function C(z) of the Catalan trees are:

C(z) = 1 + z + 2z2 + 5z3 + 14z4 + ...
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Combinatorial Study

Symbolic method

We can translate specifications to generating functions automatically

Small dictionary
ε → 1
Z → z

C = A+ B → C(z) = A(z) + B(z)
C = A× B → C(z) = A(z)B(z)
C = Seq(A) → C(z) = 1

1−A(z)

example: Catalan trees can be specified as :

C = ε+ Seq(Z × C),

Hence:
C(z) = 1 +

1
1− zC(z)

.
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Combinatorial Study

Process tree

Our process have the following grammar :

P = a | a.P |P1 ‖ P2.

We transform it into a combinatorial specification

P = Z + Z × P + P × P.

Hence the generating function of class of process trees P(z) verifies the
following equation:

P(z) = z + zP(z) + P(z)2.
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Combinatorial Study

Process tree

So the generating function is:

P(z) =
1− z −

√
1− 6z + z2

2 ,

and we have an equivalent for the number of process trees:

Pn ∼n→∞

√
3
√

2− 4
4 π n3 ·

(
3− 2

√
2
)−n

,

where
(

3− 2
√

2
)−1
≈ 5.83.

The first terms of the sequence are 1, 2, 6, 22, 90, ...
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Combinatorial Study

Increasing tree
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Combinatorial Study

Boxed product

C = A ?� B,

means that C is the product of A and B, and that the element with the
smallest label is in A
Its translation to equation is:

C = A ?� B → C(z) =

v=z∫
v=0

dA
dv (v)B(v)dv .
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Combinatorial Study

Increasing labeled process
Hence the class of increasing labeled process G verifies the following
specification:

G = Z ?� (G + 1) + G × G,
its generating function is:

G(z) = −1− 3
2 · LambertW

(
−2

3 exp
(z − 2

3

))
,

where the LambertW-function satisfies:
LambertW(z) · exp(LambertW(z)) = z .

However we have an equivalent for the number of increasing labeled
process:

Ḡn ∼n→∞ 3 ·

√
ln 3

2 −
1
3

6
√

2− 8
·

 3− 2
√

2
3
(

ln 3
2 −

1
3

)
n

· n!,

where
(

3−2
√

2
3(ln 3

2−
1
3 )

)
≈ 0.79 .
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Combinatorial Study

Size of the semantic tree

By using bivariate generating function, we can prove that

L̄n ∼n→∞ e · Ḡn,

where L̄n is the mean total size of the semantic trees.
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Algorithms

Hook length formula

The number of computations GP on a given tree P is:

GP =
|P|!∏

Pα prefixed subtree
|Pα|

,

A prefixed subtree is a subtree with an atomic action as root.
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Algorithms

Example

‖

a, 2

b, 1

‖

‖

c, 1 d , 1

e, 3

‖

f , 1 g , 1

Thus for this example, the hook length formula gives:

GP =
7!

2 · 1 · 1 · 1 · 3 · 1 · 1 = 840.
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Algorithms

Uniform generatation of runs

Algorithm

Data : T : a weighted process tree of size n
Result : σ: a run (a list of nodes)
σ := 〈〉
µ := {{aweight(a)}} # initialize a multiset
for i from n − 1 to 1 by -1 do

# invariant: the total weight of µ is i
α :=sample(µ) # sample an action according to its cardinality
σ := σ ∪ 〈α〉 # append the sampled action
µ.weight(α) := 0 # α cannot be sampled anymore
µ := µ ∪ {{γweight(γ) | γ a child of α}}

# insert the children of α in µ

return σ

Directly from the Hook Length Formula
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Algorithms

Example of prefix generation

Example

(a.b) || [(c || d) || (e.(f || g))].

σ := 〈〉
µ := {{a, a, c, d , e, e, e}}

α := e # happends with probability 3/7
σ := 〈e〉
µ := {{a, a, c, d , f , g}}
α := c # happends with probability 1/6
σ := 〈e, c〉
µ := {{a, a, d , f , g}}
...

The worst case complexity is O(n log n)
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Algorithms

Profile

Calculate the number of nodes for each level of the semantic tree

‖

a, 1 b, 3

‖

c, 1 d , 1
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d
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b 2
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c d
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c

a d
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d 4
a c 8
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Algorithms

Profile
Here our process is seen as a specification for run prefixes:

P = a || (b.(c || d)),

we derive the combinatorial specification

P = Z × (Z ?� (Z × Z)),

as we want profiles we add empty trees

P = (Z + ε) × (Z ?� ((Z + ε) × (Z + ε)) + ε),

and use our automatic method to deduce an equation:

P(z) = (z + 1)

 t=z∫
t=0

(t + 1)(t + 1)dt + 1

 ,
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Algorithms

Profile

P(z) = 1 + 2 z + 2 z2 +
4
3z3 +

1
3z4

As it is an exponential generating function, we need to multiply z i by i! to
have the number of element.
Hence the profile of P is 1, 2, 4, 8, 8.

The profile can be obtained in linear time.
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Algorithms

Uniform sampling of run of prefixes
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Algorithms

Uniform run of run of prefixes

P = a || (b.(c || d)),

This time we decorate all atomic element with his value:

P = Za × (Zb ?
� (Zc × Zd )).,

as we still want profiles we add empty trees

P = (Za + ε) × (Zb ?
� ((Zc + ε) × (Zd + ε)) + ε),

and use the automatic method to deduce an equation:

P(z) = (yaz + 1)

 t=z∫
t=0

yb(yct + 1)(yd t + 1)dt + 1

 .
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Algorithms

Uniform run of prefixes

So

P(z) =
1
3 yaybycydz4 +

1
6 (3 yaybyc + 3 yaybyd + 2 ybycyd ) z3

+
1
2 (2yayb + ybyc + ybyd ) z2 + (ya + yb)z + 1
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Algorithms

Uniform run of prefixes

Goal: sample uniformly a run amongst the runs of size `

Algorithm in 3 steps.
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Algorithms

Uniform run of prefixes: 1st step

choose a set of actions according to its distribution at size `

example: ` = 3 and

P(z) =
1
3 yaybycydz4 +

1
6 (3 yaybyc + 3 yaybyd + 2 ybycyd ) z3

+
1
2 (2yayb + ybyc + ybyd ) z2 + (ya + yb)z + 1

We choose abc with probabilty 3
8 , abd with probabilty 3

8 and bcd with
probabilty 1

4 .
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Algorithms

Uniform run of prefixes: 2nd step

Remove all the unused actions from the tree and remove the ‖ operator on
nodes that are no longer binary, it gives you a new process tree sample
uniformly a run from that new tree.

example: with the triplet abc:

‖

a, 1 b, 3

b, 2

‖

c, 1

c, 1 d , 1
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Algorithms

Uniform run of prefixes: 3rd step

sample an uniform run from the tree of the 2nd step

example:

‖

a, 1 b, 2

c, 1
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Algorithms

Conclusion

We have:

An asymptotic analysis of the semantic tree: mean number of nodes
and number of leaves
An efficient algorithm to generate runs uniformly
An efficient algorithm to compute the profile of a semantic tree
An efficient algorithm to generate run prefixes uniformly
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Algorithms

Thanks for your attention
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Algorithms

Backup slide

Data : T : a weighted process tree of size n
Result : σ: a run (a list of nodes)
σ := 〈〉
µ := {{aweight(a)}} # initialize a multiset
for i from n − 1 to 1 by -1 do

# invariant: the total weight of µ is i
α :=sample(µ) # sample an action according to its cardinality
σ := σ ∪ 〈α〉 # append the sampled action
µ.weight(α) := 0 # α cannot be sampled anymore
µ := µ ∪ {{γweight(γ) | γ a child of α}}

# insert the children of α in µ

return σ
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