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Common facility

Emergency facility

Obnoxious facility
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Facility Location Problem
Optimization problem

Locating a service facility optimally

Optimality defined in terms of Client Utility

Client Utility
A monotone function of distance the client has to travel to
reach the facility.
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MOTIVATION

Optimality Criterion
1 Mean Location that minimizes the sum of the squares of

the distances to the clients.
2 Center Location that minimizes the maximum distance to

the clients.
3 Median Location that minimizes the distance sum to the

clients.
4 Antimedian Location that maximizes the distance sum to

the clients.
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MOTIVATION

Consensus problem
A problem in which one wants to reach consensus amongst
agents or clients in a rational way.

Consensus function
A model for consensus problem.

Input Information about agents.

Output Issue about which consensus should be reached.

Rationality guaranteed The function should satisfy certain
"rational" rules.
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MOTIVATION

Consensus axioms
Axioms should be appealing and simple.

Depends on the consensus function.

K. Arrow initiated the study of the axiomatics of consensus
functions in 1951 [1].
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MOTIVATION

Location function as Consensus function
Formulate facility location problem in terms of achieving
consensus among clients (profile).

Input Location of clients

Output Locations satisfying optimality criterion

Rationality guaranteed The function should satisfy certain
"rational" rules or "consensus" axioms

A function with nice properties might be characterized by
simple axioms.
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MOTIVATION

Possibility of axiomatic characterization depends on 3
factors

1 Optimality criterion which is the function under study.
2 Structure of network in which function is defined.
3 Continuous or discrete structure.
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MOTIVATION

Axiomatic Characterization of Location Function
1 Optimality criterion depends on type of facility.
2 Structure of network represented as a graph and

clients/facilities are required to be located at vertices only.
3 Structure is discrete.
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Location Function Structure Author Year
Mean function Tree networks Holzman

[10]
1990

Mean function Trees (discrete
case)

McMorris
et.al.
[14, 15]

2010,
2012

Median function Tree networks
(continuous case)

Vohra [26] 1996

Median function Cube-free me-
dian graphs

McMorris
et.al.

1998

Median function Hypercubes and
median graphs

Mulder
and Novick
[22], [23]

2011,
2013
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Location Function Structure Author Year
Center function Trees McMorris

et.al. [18]
and Mul-
der et.al.
[24]

2001,
2008

Antimedian func-
tion

Hypercubes and
paths

Balakrishnan
et.al. [8]

2012
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MOTIVATION

Focus of this paper
Axiomatic characterization of

1 Antimedian function on complete graphs
2 Median and antimedian functions on cocktail-party graphs
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DISTANCE FUNCTION AND INTERVAL

Distance Function
Let G = (V,E) be a finite, connected, simple graph with
vertex set V and edge set E.

Distance function of G is denoted by d.

d(u, v) is the length of a shortest u, v-path

Interval
Interval I(u, v) between two vertices u and v in G consists of all
vertices on shortest u, v-paths, that is:

I(u, v) = {x | d(u, x) + d(x, v) = d(u, v)} (1)
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PROFILE π

A non-empty sequence π = (x1, x2, . . . , xk) of vertices of V with
repetitions allowed.

length k = |π|

V∗ the set of all profiles of finite length.

Subprofile a non-empty subsequence of π

Plurality vertex A vertex in π with highest occurrence in π

Carrier set {π} the set of all vertices of π

Concatenation The concatenation of profiles π and ρ is
denoted by πρ.

πm The profile consisting of the concatenation of m copies
of π.



Introduction Preliminaries Complete Graphs Cocktail-party Graphs Conclusion

CONSENSUS FUNCTION



Introduction Preliminaries Complete Graphs Cocktail-party Graphs Conclusion

CONSENSUS FUNCTION

A function on G, F : V∗ → 2V − ∅ that gives a non-empty
subset of V as output for each profile on G.



Introduction Preliminaries Complete Graphs Cocktail-party Graphs Conclusion

CONSENSUS FUNCTION

A function on G, F : V∗ → 2V − ∅ that gives a non-empty
subset of V as output for each profile on G.

For convenience, we write F(x1, . . . , xk) instead of
F((x1, . . . , xk)).
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REMOTENESS FUNCTION

The remoteness of a vertex v to profile π is defined as

r(v, π) =
k∑

i=1

d(xi, v). (2)
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MEDIAN AND ANTIMEDIAN

Median
A vertex minimizing r(v, π) is called a median of the profile.

Median set M(π) The set of all medians of π.

Antimedian
A vertex maximizing r(v, π) is called an antimedian of the
profile.

Antimedian set AM(π) The set of all antimedians of π.
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REMOTENESS COMPUTATION - FINDING MEDIAN

AND ANTIMEDIAN

Median M(G) = {b} Antimedian AM(G) = {d}
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MEDIAN OF PROFILES OF LENGTH 1, 2 AND 3

M(x) = {x}, (3)

M(x, y) = I(x, y). (4)

If I(u, v) ∩ I(v,w) ∩ I(w,u) 6= ∅, then

M(u, v,w) = I(u, v) ∩ I(v,w) ∩ I(w,u). (5)

Median Graph

For any three vertices u, v,w, |I(u, v) ∩ I(v,w) ∩ I(w,u)| = 1.
Any profile of length 3 has a unique median.
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COMMONLY USED AXIOMS ON MEDIAN FUNCTION

Three simple and natural axioms suffice in this case.

(A) Anonymity: F(π) = F(xχ(1), xχ(2), . . . , xχ(k)), for any profile
π = (x1, x2, . . . , xk) on V and for any permutation
χ of {1, 2, . . . , k}.

(C) Consistency: If F(π) ∩ F(ρ) 6= ∅, for profiles π and ρ, then
F(πρ) = F(π) ∩ F(ρ).

(B) Betweenness: F(u, v) = I(u, v), for all u, v in V.

The first two axioms are defined without any
reference to metric.
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COMPLETE GRAPHS

Complete Graph K6
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ANTIMEDIAN FUNCTION

Location functions on the complete graph that satisfy the
axioms (A), (B) and (C) are extensively studied by
McMorris et.al. [13]

Due to its nice behaviour, the antimedian function has a
simple axiomatic characterization on complete graphs.

Computing AM(π)

V = {v1, v2, . . . , vn} be the vertex set of Kn, n > 1.

A preferred ordering of the vertices in V.

{π} : set of vertices occurring in π.

Set Wπ : set of vertices that occur the least in π.

AM(π) = Wπ
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COMPUTING AM(π)

Graph K6

Profile π = (a1, a2, a4, a1, a4)
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COMPUTING AM(π)

AM(π) = Wπ = {a3, a5, a6}
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AXIOMS

Two cases = Two axioms
{π} proper subset of V ⇒ Wπ = V − {π}

π contains all vertices exactly m times (m > 0) ⇒ Wπ = V

Completeness: F(v1, v2, . . . , vn) = V.

Complement: F(x) = V − {x}, for each x ∈ V.
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4 AXIOMS

Theorem 4.1
Let F be a consensus function on Kn with n > 1. Then F is the
antimedian function if and only if F satisfies (A), (C), Completeness
and Complement.

Proof.
AM(π) satisfies the four axioms. Conversely, let F satisfy the four axioms.
Let π = (x1, x2, . . . , xk).
{π} ⊂ V : π = concatenation of (x1), (x2), . . . , (xk). By Complement: F(x1) ∩ . . . ∩ F(xk) = Wπ = V − {π}.
(So (C))
All v ∈ V occur exactly m times in π (m > 0). Then π = (v1, v2, . . . , vn)

m due to (A). (So (C) and Completeness).
π is any other profile. Some vertices occur exactly m times in π and other vertices occur more than m times.
π = π

′(v1, v2, . . . , vn)
m due to (A) [W

π′ is the set of vertices that occur exactly m times in π]
By the above observations and (C), we have F(π) = F(π′) ∩ V = W

π′ = AM(π).
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INDEPENDENCE OF AXIOMS

We do not yet have an example that shows whether Anonymity
is independent from the other axioms.
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INDEPENDENCE OF AXIOM Complement

Complement excluded.

Let F be defined by F(π) = V for all profiles.

Then it fails Complement but satisfies trivially the other
axioms.
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INDEPENDENCE OF AXIOM (C)

(C) excluded.
Let F be defined by
(k1): F(x) = V − {x}, for any x ∈ V,
(k2): F(π) = V, for any profile π of length at least 2.

Then F fails (C) but trivially satisfies the other axioms.
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INDEPENDENCE OF AXIOM Completeness

Completeness excluded.
Let F be defined by
(k3): F(π) = {v1}, for any π with {π} = V,

(k4): F(π) = V − {π}, for any π with {π} 6= V.

F satisfies (A) and Complement.
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INDEPENDENCE OF AXIOM Completeness

Completeness excluded.
Let F be defined by
(k3): F(π) = {v1}, for any π with {π} = V,

(k4): F(π) = V − {π}, for any π with {π} 6= V.

F satisfies (A) and Complement.

By (k3) F fails Completeness.
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INDEPENDENCE OF AXIOM Completeness

Completeness excluded.
Let F be defined by
(k3): F(π) = {v1}, for any π with {π} = V,

(k4): F(π) = V − {π}, for any π with {π} 6= V.

F satisfies (A) and Complement.

By (k3) F fails Completeness.

Check Consistency
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Let π and ρ be two profiles.

{π} = V = {ρ}

F(π) = F(ρ) = F(πρ) = {v1}

{π} = V and {ρ} 6= V

If ρ does not contain v1, then F(π) ∩ F(ρ) 6= ∅.

F(π) = F(π) ∩ F(ρ) = {v1} = F(πρ)

{π} and {ρ} are proper subsets of V

F(π) = V − {π} and F(ρ) = V − {ρ}.
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Let π and ρ be two profiles.

{π} = V = {ρ}

F(π) = F(ρ) = F(πρ) = {v1}

{π} = V and {ρ} 6= V

If ρ does not contain v1, then F(π) ∩ F(ρ) 6= ∅.

F(π) = F(π) ∩ F(ρ) = {v1} = F(πρ)

{π} and {ρ} are proper subsets of V

F(π) = V − {π} and F(ρ) = V − {ρ}.

F(π) ∩ F(ρ) 6= ∅ if and only if {π} ∪ {ρ} = {πρ} is a proper
subset of V.
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Let π and ρ be two profiles.

{π} = V = {ρ}

F(π) = F(ρ) = F(πρ) = {v1}

{π} = V and {ρ} 6= V

If ρ does not contain v1, then F(π) ∩ F(ρ) 6= ∅.

F(π) = F(π) ∩ F(ρ) = {v1} = F(πρ)

{π} and {ρ} are proper subsets of V

F(π) = V − {π} and F(ρ) = V − {ρ}.

F(π) ∩ F(ρ) 6= ∅ if and only if {π} ∪ {ρ} = {πρ} is a proper
subset of V.

Again we have F(πρ) = F(π) ∩ F(ρ).
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Complete graph K2n with V = {v1, . . . , vn, vn+1, . . . , v2n}.
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DEFINITIONS

Cocktail-party graph K(n×2)

Complete graph K2n with V = {v1, . . . , vn, vn+1, . . . , v2n}.

Delete perfect matchings v1vn+1, . . ., vnv2n.

Arises in the handshake problem.

Distance-transitive, and hence also Distance-regular.
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DEFINITIONS

Mating pairs

Mates (v, ṽ): {vi, vn+i} (1 ≤ i ≤ n) is a pair of mates.

π̃: Obtained from π by replacing each element by its mate.

Mating pair: The profile (v, ṽ).
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DEFINITIONS

Mating pairs

Mates (v, ṽ): {vi, vn+i} (1 ≤ i ≤ n) is a pair of mates.

π̃: Obtained from π by replacing each element by its mate.

Mating pair: The profile (v, ṽ).

Mating profile: The concatenation of mating pairs.
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REMOTENESS

Lemma 5.1

Let G be a cocktail-party graph with vertex set V, and let π = (v, ṽ)
be a mating pair. Then r(u, π) = 2, for all v in V.



Introduction Preliminaries Complete Graphs Cocktail-party Graphs Conclusion

COMPUTING MEDIAN AND ANTIMEDIAN



Introduction Preliminaries Complete Graphs Cocktail-party Graphs Conclusion

COMPUTING MEDIAN AND ANTIMEDIAN

π : a profile on the cocktail-party graph.



Introduction Preliminaries Complete Graphs Cocktail-party Graphs Conclusion

COMPUTING MEDIAN AND ANTIMEDIAN

π : a profile on the cocktail-party graph.

π′ : π \ (v, ṽ).
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COMPUTING MEDIAN AND ANTIMEDIAN

π : a profile on the cocktail-party graph.

π′ : π \ (v, ṽ).

M(π) = M(π′) and AM(π) = AM(π′).

Mate-free subprofile ρ (after deleting all mates in π)

M(π) = Pl(ρ) (the vertices with highest occurrence in ρ, )

AM(π) = Pl(ρ̃) (the mates of the vertices with highest
occurrence)
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COMPUTING M(π) AND AM(π)

Graph K3×2
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COMPUTING M(π) AND AM(π)

Graph K3×2

Profile π = (a1, b1, a2, b3)
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COMPUTING M(π) AND AM(π)

M(π) = {a2, b3} and AM(π) = {b2, a3}
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MEDIAN FUNCTION

Lemma 5.2

Let F be the median function defined on the vertex set V of a
cocktail-party graph G. Then F(v, ṽ) = V, for any v ∈ V.
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MEDIAN FUNCTION

Lemma 5.2

Let F be the median function defined on the vertex set V of a
cocktail-party graph G. Then F(v, ṽ) = V, for any v ∈ V.

Proof.
Direct consequence of Lemma 5.1.
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MEDIAN FUNCTION

Lemma 5.3

Let F be the median function defined on the vertex set V of a
cocktail-party graph G. Then F(π) = Pl(π), for all mate-free profiles
π.
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MEDIAN FUNCTION

Lemma 5.3

Let F be the median function defined on the vertex set V of a
cocktail-party graph G. Then F(π) = Pl(π), for all mate-free profiles
π.

Proof.
π = (x1, x2, . . . , xk) be a mate-free profile.
{π} = {y1, y2, . . . , yℓ}
fj the number of occurrences of yj in π.
For any vertex w outside the profile π, we have d(w, yj) ≥ 1, for each vertex yj in π.

f =
∑

ℓ

j=1 fj .

r(w, π) ≥ f .
u be any vertex in π.
d(u, xi) = 1, for any xi 6= u.
r(u, π) = f − fj, for u = yj. (vertices that minimize remoteness are all in π).
r(u, π) = f − fj is minimum when fj is maximum. (vertices that minimize remoteness are precisely those that
occur most often in π).
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AXIOMS BY LEMMA 5.2 AND LEMMA 5.3

(A1): F(v, ṽ) = V, for all v ∈ V.

(A2): F(π) = Pl(π), for all mate-free profiles π.

Remark 5.4

Let F be a consensus function defined on the vertex set V of a
cocktail-party graph G such that F satisfies A1 and A2. Then F
satisfies the Betweenness axiom (B).
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4 AXIOMS

Theorem 5.5

Let F be a consensus function on a cocktail-party graph G with vertex
set V. Then F is the median function if and only if F satisfies axioms
(A), (C), (A1) and (A2).
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4 AXIOMS

Theorem 5.5

Let F be a consensus function on a cocktail-party graph G with vertex
set V. Then F is the median function if and only if F satisfies axioms
(A), (C), (A1) and (A2).

Proof.
The median function satisfies all the four axioms.
F a function satisfying the four axioms.
If π contains a pair of mates v, ṽ, we can permute π as (v, ṽ)ρ
ρ is the subprofile of π obtained by deleting the elements v and ṽ from their respective positions.
(A1): F(v, ṽ) = V.
So F(v, ṽ) ∩ F(ρ) 6= ∅.
By (C), F((v, ṽ)ρ) = F(v, ṽ) ∩ F(ρ) = F(ρ).
By (A), F(π) = F(v, ṽ) ∩ F(ρ) = F(ρ).
Repeat this process until we end up with a subprofile σ of π that is either a mating pair or mate-free.
If σ is mate-free, F(π) = F(σ). By (A2), F(σ) = Pl(σ) = M(σ) = M(π).
If σ is a mating pair, F(σ) = V = F(π) = M(π).
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INDEPENDENCE OF AXIOMS

Examples
We want to know whether the axioms involved are
independent.

In all examples G is a cocktail-party graph with vertex set
V having at least 4 vertices.
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INDEPENDENCE OF AXIOM (A1)

(A1) excluded.
Define F(π) = Pl(π), for all profiles π.

F satisfies (A), (C) and (A2).

Since F(v, ṽ) = {v, ṽ} 6= V, for any vertex v, the function F
does not satisfy (A1).
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INDEPENDENCE OF AXIOM (A2)

(A2) excluded.
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Define F(π) = V, for all profiles π.
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INDEPENDENCE OF AXIOM (A2)

(A2) excluded.

Define F(π) = V, for all profiles π.

F satisfies (A), (C) and (A1).
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INDEPENDENCE OF AXIOM (A2)

(A2) excluded.

Define F(π) = V, for all profiles π.

F satisfies (A), (C) and (A1).

For any two adjacent vertices u and v in G,

F(u, v) = V 6= {u, v} = Pl(u, v). (6)

So F does not satisfy (A2).
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INDEPENDENCE OF AXIOM (C)

(C) excluded.
Define
(c1): F(v, ṽ) = V, for all vertices v in V,
(c2): F(π) = Pl(π), for all profiles π that are not a mating pair.
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INDEPENDENCE OF AXIOM (C)

(C) excluded.
Define
(c1): F(v, ṽ) = V, for all vertices v in V,
(c2): F(π) = Pl(π), for all profiles π that are not a mating pair.

F satisfies (A), (A1) and (A2).
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INDEPENDENCE OF AXIOM (C)

(C) excluded.
Define
(c1): F(v, ṽ) = V, for all vertices v in V,
(c2): F(π) = Pl(π), for all profiles π that are not a mating pair.

F satisfies (A), (A1) and (A2).

Take two vertices u and v that are not mates, and let
π = (u, ũ, v, ṽ).
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INDEPENDENCE OF AXIOM (C)

(C) excluded.
Define
(c1): F(v, ṽ) = V, for all vertices v in V,
(c2): F(π) = Pl(π), for all profiles π that are not a mating pair.

F satisfies (A), (A1) and (A2).

Take two vertices u and v that are not mates, and let
π = (u, ũ, v, ṽ).

by (c2), we have

F(π) = Pl(π) = {u, ũ, v, ṽ} 6= V = F(u, ũ) ∩ F(v, ṽ). (7)

So F does not satisfy Consistency.
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We do not yet have an example that shows independence
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Not to expect that it follows from the other axioms.



Introduction Preliminaries Complete Graphs Cocktail-party Graphs Conclusion

INDEPENDENCE OF AXIOM (A)

The case of Anonymity

The independence of Anonymity is a non-trivial issue.

We do not yet have an example that shows independence
of Anonymity.

Not to expect that it follows from the other axioms.

Open problem here.
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ANTIMEDIAN FUNCTION-AXIOMS

(A3): F(π) = Pl(π̃), for all mate-free profiles π.
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ANTIMEDIAN FUNCTION-AXIOMS

(A3): F(π) = Pl(π̃), for all mate-free profiles π.

Theorem 5.6

Let F be a consensus function on a cocktail-party graph G with vertex
set V. Then F is the antimedian function if and only if F satisfies
axioms (A), (C), (A1) and (A3).
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INDEPENDENCE OF AXIOMS

Examples
We want to know whether the axioms involved are
independent.

In all examples G is a cocktail-party graph with vertex set
V having at least 4 vertices.
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INDEPENDENCE OF AXIOM (A1)

(A1) excluded.

F(π) = Pl(π̃), for all profiles π.

F satisfies (A), (C) and (A3).
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INDEPENDENCE OF AXIOM (A1)

(A1) excluded.

F(π) = Pl(π̃), for all profiles π.

F satisfies (A), (C) and (A3).

Since F(v, ṽ) = {ṽ, v} 6= V, for any vertex v, the function F
does not satisfy (A1).
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INDEPENDENCE OF AXIOM (A3)

(A3) excluded.
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INDEPENDENCE OF AXIOM (A3)

(A3) excluded.

F(π) = V, for all profiles π.
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INDEPENDENCE OF AXIOM (A3)

(A3) excluded.

F(π) = V, for all profiles π.

F satisfies axioms (A), (C) and (A1).
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INDEPENDENCE OF AXIOM (C)

(C) excluded.
Define the function F on G by
(c1) F(v, ṽ) = V, for all vertices v in V,
(c2) F(π) = Pl(π̃), for all profiles π that are not a mating pair.

F satisfies (A), (A1) and (A3).

Take two vertices u and v that are not mates, and let
π = (u, ũ, v, ṽ).

Then, by (c2), we have

F(π) = Pl(π̃) = {ũ,u, ṽ, v} 6= V = F(u, ũ) ∩ F(v, ṽ). (9)

So F does not satisfy Consistency.
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INDEPENDENCE OF AXIOM (A)

We do not have an example yet that shows the independency of
Anonymity. We leave this as an open problem.
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