M. Changat, D S. Lekha, H M. Mulder, A R. Subhamathi

CALDAM 2015 @ IIT Kanpur, 9 Feb 2015

OVERVIEW

- Introduction
 - Scenario
 - Motivation
- 2 Preliminaries
 - Definitions
- 3 Complete Graphs
 - Antimedian Function on Complete Graphs
 - Axiomatic characterization
- 4 Cocktail-party Graphs
 - Median Function on Cocktail-Party Graphs
 - Antimedian Function on Cocktail-Party Graphs
- 6 Conclusion

PLAN

Introduction

- Introduction
 - Scenario
 - Motivation
- 2 Preliminaries
 - Definitions
- 3 Complete Graphs
 - Antimedian Function on Complete Graphs
 - Axiomatic characterization
- 4 Cocktail-party Graphs
 - Median Function on Cocktail-Party Graphs
 - Antimedian Function on Cocktail-Party Graphs
- 5 Conclusion

SCENARIO

SCENARIO

SCENARIO

Introduction

SCENARIO - DIFFERENT TYPES OF FACILITIES

Common facility

Introduction

Emergency facility

Obnoxious facility

•000000000

Facility Location Problem

•000000000

Facility Location Problem

Optimization problem

•000000000

Facility Location Problem

- Optimization problem
- Locating a service facility optimally

•000000000

Facility Location Problem

- Optimization problem
- Locating a service facility optimally
- Optimality defined in terms of Client Utility

•000000000

Facility Location Problem

- Optimization problem
- Locating a service facility optimally
- Optimality defined in terms of Client Utility

Client Utility

Facility Location Problem

- Optimization problem
- Locating a service facility optimally
- Optimality defined in terms of Client Utility

Client Utility

• A monotone function of distance the client has to travel to reach the facility.

000000000

MOTIVATION

Introduction

000000000

Optimality Criterion

Mean Location that minimizes the sum of the squares of the distances to the clients.

000000000

- Mean Location that minimizes the sum of the squares of the distances to the clients.
- **② Center** Location that minimizes the maximum distance to the clients.

000000000

- Mean Location that minimizes the sum of the squares of the distances to the clients.
- Center Location that minimizes the maximum distance to the clients.
- Median Location that minimizes the distance sum to the clients.

000000000

- Mean Location that minimizes the sum of the squares of the distances to the clients.
- Center Location that minimizes the maximum distance to the clients.
- Median Location that minimizes the distance sum to the clients.
- Antimedian Location that maximizes the distance sum to the clients.

000000000

Consensus problem

A problem in which one wants to reach consensus amongst agents or clients in a rational way.

000000000

Consensus problem

A problem in which one wants to reach consensus amongst agents or clients in a rational way.

000000000

Consensus problem

A problem in which one wants to reach consensus amongst agents or clients in a rational way.

Consensus function

• A model for consensus problem.

000000000

Consensus problem

A problem in which one wants to reach consensus amongst agents or clients in a rational way.

- A model for consensus problem.
- **Input** Information about agents.

000000000

Consensus problem

A problem in which one wants to reach consensus amongst agents or clients in a rational way.

- A model for consensus problem.
- **Input** Information about agents.
- Output Issue about which consensus should be reached.

000000000

Consensus problem

A problem in which one wants to reach consensus amongst agents or clients in a rational way.

- A model for consensus problem.
- **Input** Information about agents.
- Output Issue about which consensus should be reached.
- Rationality guaranteed The function should satisfy certain "rational" rules.

MOTIVATION

Introduction

000000000

Consensus axioms

0000000000

Consensus axioms

• Axioms should be appealing and simple.

0000000000

Consensus axioms

- Axioms should be appealing and simple.
- Depends on the consensus function.

0000000000

Consensus axioms

- Axioms should be appealing and simple.
- Depends on the consensus function.

K. Arrow initiated the study of the axiomatics of consensus functions in 1951 [1].

0000000000

0000000000

Location function as Consensus function

• Formulate facility location problem in terms of achieving consensus among clients (profile).

0000000000

- Formulate facility location problem in terms of achieving consensus among clients (profile).
- Input Location of clients

MOTIVATION

Introduction

0000000000

- Formulate facility location problem in terms of achieving consensus among clients (profile).
- Input Location of clients
- Output Locations satisfying optimality criterion

0000000000

- Formulate facility location problem in terms of achieving consensus among clients (profile).
- Input Location of clients
- Output Locations satisfying optimality criterion
- Rationality guaranteed The function should satisfy certain "rational" rules or "consensus" axioms

0000000000

Location function as Consensus function

- Formulate facility location problem in terms of achieving consensus among clients (profile).
- Input Location of clients
- Output Locations satisfying optimality criterion
- Rationality guaranteed The function should satisfy certain "rational" rules or "consensus" axioms

A function with nice properties might be characterized by simple axioms.

0000000000

Possibility of axiomatic characterization depends on 3 factors

0000000000

Possibility of axiomatic characterization depends on 3 factors

• Optimality criterion which is the function under study.

0000000000

Possibility of axiomatic characterization depends on 3 factors

- Optimality criterion which is the function under study.
- 2 Structure of network in which function is defined.

0000000000

Possibility of axiomatic characterization depends on 3 factors

- Optimality criterion which is the function under study.
- 2 Structure of network in which function is defined.
- Continuous or discrete structure.

Introduction

0000000000

Axiomatic Characterization of Location Function

Introduction

0000000000

Axiomatic Characterization of Location Function

• Optimality criterion depends on type of facility.

Introduction

0000000000

Axiomatic Characterization of Location Function

- Optimality criterion depends on type of facility.
- ② Structure of network represented as a graph and clients/facilities are required to be located at vertices only.

0000000000

Axiomatic Characterization of Location Function

- Optimality criterion depends on type of facility.
- Structure of network represented as a graph and clients/facilities are required to be located at vertices only.
- **3** Structure is discrete.

Location Function	Structure	Author	Year
Mean function	Tree networks	Holzman	1990
		[10]	
Mean function	Trees (discrete	McMorris	2010,
	case)	et.al.	2012
		[14, 15]	
Median function	Tree networks	Vohra [26]	1996
	(continuous case)		
Median function	Cube-free me-	McMorris	1998
	dian graphs	et.al.	
Median function	Hypercubes and	Mulder	2011,
	median graphs	and Novick	2013
		[22], [23]	

000000000

Cocktail-party Graphs

Introduction

000000000

Focus of this paper

Introduction

000000000

Focus of this paper

• Axiomatic characterization of

000000000

Focus of this paper

- Axiomatic characterization of
 - Antimedian function on complete graphs

000000000

Focus of this paper

- Axiomatic characterization of
 - Antimedian function on complete graphs
 - Median and antimedian functions on cocktail-party graphs

- Introduction
 - Scenario
 - Motivation
- 2 Preliminaries
 - Definitions
- 3 Complete Graphs
 - Antimedian Function on Complete Graphs
 - Axiomatic characterization
- 4 Cocktail-party Graphs
 - Median Function on Cocktail-Party Graphs
 - Antimedian Function on Cocktail-Party Graphs
- 5 Conclusion

DISTANCE FUNCTION AND INTERVAL

Distance Function

Distance Function

• Let G = (V, E) be a finite, connected, simple graph with vertex set V and edge set E.

Distance Function

- Let G = (V, E) be a finite, connected, simple graph with vertex set V and edge set E.
- Distance function of *G* is denoted by *d*.

DISTANCE FUNCTION AND INTERVAL

Distance Function

- Let G = (V, E) be a finite, connected, simple graph with vertex set *V* and edge set *E*.
- Distance function of *G* is denoted by *d*.
- d(u,v) is the length of a shortest u,v-path

Distance Function

- Let G = (V, E) be a finite, connected, simple graph with vertex set *V* and edge set *E*.
- Distance function of *G* is denoted by *d*.
- d(u,v) is the length of a shortest u,v-path

Interval

Interval I(u, v) between two vertices u and v in G consists of all vertices on shortest u, v-paths, that is:

$$I(u,v) = \{x \mid d(u,x) + d(x,v) = d(u,v)\}$$
 (1)

A non-empty sequence $\pi = (x_1, x_2, \dots, x_k)$ of vertices of V with repetitions allowed.

• length $k = |\pi|$

- length $k = |\pi|$
- V^* the set of all profiles of finite length.

- length $k = |\pi|$
- *V** the set of all profiles of finite length.
- **Subprofile** a non-empty subsequence of π

- length $k = |\pi|$
- V^* the set of all profiles of finite length.
- **Subprofile** a non-empty subsequence of π
- Plurality vertex A vertex in π with highest occurrence in π

- length $k = |\pi|$
- V^* the set of all profiles of finite length.
- **Subprofile** a non-empty subsequence of π
- Plurality vertex A vertex in π with highest occurrence in π
- Carrier set $\{\pi\}$ the set of all vertices of π

- length $k = |\pi|$
- V^* the set of all profiles of finite length.
- **Subprofile** a non-empty subsequence of π
- Plurality vertex A vertex in π with highest occurrence in π
- Carrier set $\{\pi\}$ the set of all vertices of π
- Concatenation The concatenation of profiles π and ρ is denoted by $\pi \rho$.

- length $k = |\pi|$
- V^* the set of all profiles of finite length.
- **Subprofile** a non-empty subsequence of π
- Plurality vertex A vertex in π with highest occurrence in π
- Carrier set $\{\pi\}$ the set of all vertices of π
- Concatenation The concatenation of profiles π and ρ is denoted by $\pi \rho$.
- π^m The profile consisting of the concatenation of m copies of π .

• A function on $G, F: V^* \to 2^V - \emptyset$ that gives a non-empty subset of *V* as output for each profile on *G*.

CONSENSUS FUNCTION

- A function on $G, F: V^* \to 2^V \emptyset$ that gives a non-empty subset of *V* as output for each profile on *G*.
- For convenience, we write $F(x_1, ..., x_k)$ instead of $F((x_1,\ldots,x_k)).$

The *remoteness* of a vertex v to profile π is defined as

$$r(v,\pi) = \sum_{i=1}^{k} d(x_i, v).$$
 (2)

Median

Median

• A vertex minimizing $r(v, \pi)$ is called a *median* of the profile.

Median

- A vertex minimizing $r(v, \pi)$ is called a *median* of the profile.
- **Median set** $M(\pi)$ The set of all medians of π .

Median

- A vertex minimizing $r(v, \pi)$ is called a *median* of the profile.
- **Median set** $M(\pi)$ The set of all medians of π .

Antimedian

Median and Antimedian

Median

- A vertex minimizing $r(v, \pi)$ is called a *median* of the profile.
- **Median set** $M(\pi)$ The set of all medians of π .

Antimedian

• A vertex maximizing $r(v, \pi)$ is called an *antimedian* of the profile.

Median

Introduction

- A vertex minimizing $r(v, \pi)$ is called a *median* of the profile.
- **Median set** $M(\pi)$ The set of all medians of π .

Antimedian

- A vertex maximizing $r(v, \pi)$ is called an *antimedian* of the profile.
- Antimedian set $AM(\pi)$ The set of all antimedians of π .

Cocktail-party Graphs

Remoteness Computation - Finding remoteness of vertex a

Cocktail-party Graphs

REMOTENESS COMPUTATION - FINDING MEDIAN AND ANTIMEDIAN

Median $M(G) = \{b\}$ Antimedian $AM(G) = \{d\}$

$$M(x) = \{x\},\tag{3}$$

$$M(x,y) = I(x,y). (4)$$

If $I(u, v) \cap I(v, w) \cap I(w, u) \neq \emptyset$, then

$$M(u, v, w) = I(u, v) \cap I(v, w) \cap I(w, u). \tag{5}$$

Introduction

MEDIAN OF PROFILES OF LENGTH 1, 2 AND 3

$$M(x) = \{x\},\tag{3}$$

$$M(x,y) = I(x,y). (4)$$

If $I(u, v) \cap I(v, w) \cap I(w, u) \neq \emptyset$, then

$$M(u, v, w) = I(u, v) \cap I(v, w) \cap I(w, u). \tag{5}$$

Median Graph

For any three vertices u, v, w, $|I(u, v) \cap I(v, w) \cap I(w, u)| = 1$. Any profile of length 3 has a unique median.

Three simple and natural axioms suffice in this case.

Three simple and natural axioms suffice in this case.

(A) Anonymity: $F(\pi) = F(x_{\chi(1)}, x_{\chi(2)}, \dots, x_{\chi(k)})$, for any profile $\pi = (x_1, x_2, \dots, x_k)$ on V and for any permutation χ of $\{1, 2, ..., k\}$.

COMMONLY USED AXIOMS ON MEDIAN FUNCTION

Three simple and natural axioms suffice in this case.

- (A) Anonymity: $F(\pi) = F(x_{\chi(1)}, x_{\chi(2)}, \dots, x_{\chi(k)})$, for any profile $\pi = (x_1, x_2, \dots, x_k)$ on V and for any permutation χ of $\{1, 2, \dots, k\}$.
- (C) Consistency: If $F(\pi) \cap F(\rho) \neq \emptyset$, for profiles π and ρ , then $F(\pi \rho) = F(\pi) \cap F(\rho)$.

COMMONLY USED AXIOMS ON MEDIAN FUNCTION

Three simple and natural axioms suffice in this case.

- (A) Anonymity: $F(\pi) = F(x_{\chi(1)}, x_{\chi(2)}, \dots, x_{\chi(k)})$, for any profile $\pi = (x_1, x_2, \dots, x_k)$ on V and for any permutation χ of $\{1, 2, \dots, k\}$.
- (C) Consistency: If $F(\pi) \cap F(\rho) \neq \emptyset$, for profiles π and ρ , then $F(\pi\rho) = F(\pi) \cap F(\rho)$.
- (B) Betweenness: F(u, v) = I(u, v), for all u, v in V.

Three simple and natural axioms suffice in this case.

- (A) Anonymity: $F(\pi) = F(x_{\chi(1)}, x_{\chi(2)}, \dots, x_{\chi(k)})$, for any profile $\pi = (x_1, x_2, \dots, x_k)$ on V and for any permutation χ of $\{1, 2, \dots, k\}$.
- (C) Consistency: If $F(\pi) \cap F(\rho) \neq \emptyset$, for profiles π and ρ , then $F(\pi\rho) = F(\pi) \cap F(\rho)$.
- (B) Betweenness: F(u, v) = I(u, v), for all u, v in V.

The first two axioms are defined without any reference to metric.

PLAN

- - Scenario
 - Motivation
- - Definitions
- Complete Graphs
 - Antimedian Function on Complete Graphs
 - Axiomatic characterization
- Cocktail-party Graphs
 - Median Function on Cocktail-Party Graphs
 - Antimedian Function on Cocktail-Party Graphs

COMPLETE GRAPHS

Complete Graph K₆

ANTIMEDIAN FUNCTION

• Location functions on the complete graph that satisfy the axioms (A), (B) and (C) are extensively studied by McMorris et.al. [13]

- Location functions on the complete graph that satisfy the axioms (A), (B) and (C) are extensively studied by McMorris et.al. [13]
- Due to its nice behaviour, the antimedian function has a simple axiomatic characterization on complete graphs.

- Location functions on the complete graph that satisfy the axioms (A), (B) and (C) are extensively studied by McMorris et.al. [13]
- Due to its nice behaviour, the antimedian function has a simple axiomatic characterization on complete graphs.

- Location functions on the complete graph that satisfy the axioms (A), (B) and (C) are extensively studied by McMorris et.al. [13]
- Due to its nice behaviour, the antimedian function has a simple axiomatic characterization on complete graphs.

• $V = \{v_1, v_2, ..., v_n\}$ be the vertex set of K_n , n > 1.

- Location functions on the complete graph that satisfy the axioms (A), (B) and (C) are extensively studied by McMorris et.al. [13]
- Due to its nice behaviour, the antimedian function has a simple axiomatic characterization on complete graphs.

- $V = \{v_1, v_2, ..., v_n\}$ be the vertex set of K_n , n > 1.
- A preferred ordering of the vertices in *V*.

- Location functions on the complete graph that satisfy the axioms (A), (B) and (C) are extensively studied by McMorris et.al. [13]
- Due to its nice behaviour, the antimedian function has a simple axiomatic characterization on complete graphs.

- $V = \{v_1, v_2, ..., v_n\}$ be the vertex set of K_n , n > 1.
- A preferred ordering of the vertices in *V*.
- $\{\pi\}$: set of vertices occurring in π .

 Location functions on the complete graph that satisfy the axioms (A), (B) and (C) are extensively studied by McMorris et.al. [13]

Complete Graphs

 Due to its nice behaviour, the antimedian function has a simple axiomatic characterization on complete graphs.

- $V = \{v_1, v_2, ..., v_n\}$ be the vertex set of K_n , n > 1.
- A preferred ordering of the vertices in *V*.
- $\{\pi\}$: set of vertices occurring in π .
- Set W_{π} : set of vertices that occur the least in π .

- Location functions on the complete graph that satisfy the axioms (*A*), (*B*) and (*C*) are extensively studied by McMorris et.al. [13]
- Due to its nice behaviour, the antimedian function has a simple axiomatic characterization on complete graphs.

- $V = \{v_1, v_2, ..., v_n\}$ be the vertex set of K_n , n > 1.
- A preferred ordering of the vertices in V.
- $\{\pi\}$: set of vertices occurring in π .
- Set W_{π} : set of vertices that occur the least in π .
- $AM(\pi) = W_{\pi}$

Graph K_6

COMPUTING $AM(\pi)$

Graph K₆

Profile $\pi = (a_1, a_2, a_4, a_1, a_4)$

$$AM(\pi) = W_{\pi} = \{a_3, a_5, a_6\}$$

Two cases = Two axioms

Two cases = Two axioms

• $\{\pi\}$ proper subset of $V \Rightarrow W_{\pi} = V - \{\pi\}$

Two cases = Two axioms

- $\{\pi\}$ proper subset of $V \Rightarrow W_{\pi} = V \{\pi\}$
- π contains all vertices exactly m times $(m > 0) \Rightarrow W_{\pi} = V$

Two cases = Two axioms

- $\{\pi\}$ proper subset of $V \Rightarrow W_{\pi} = V \{\pi\}$
- π contains all vertices exactly m times $(m > 0) \Rightarrow W_{\pi} = V$

Two cases = Two axioms

- $\{\pi\}$ proper subset of $V \Rightarrow W_{\pi} = V \{\pi\}$
- π contains all vertices exactly m times $(m > 0) \Rightarrow W_{\pi} = V$

Completeness: $F(v_1, v_2, \dots, v_n) = V$.

Two cases = Two axioms

- $\{\pi\}$ proper subset of $V \Rightarrow W_{\pi} = V \{\pi\}$
- π contains all vertices exactly m times $(m > 0) \Rightarrow W_{\pi} = V$

Completeness: $F(v_1, v_2, \dots, v_n) = V$.

Complement: $F(x) = V - \{x\}$, for each $x \in V$.

Introduction

Theorem 4.1

Let F be a consensus function on K_n with n > 1. Then F is the antimedian function if and only if F satisfies (A), (C), Completeness and Complement.

Theorem 4.1

Let F be a consensus function on K_n with n > 1. Then F is the antimedian function if and only if F satisfies (A), (C), Completeness and Complement.

Proof.

```
AM(\pi) satisfies the four axioms. Conversely, let F satisfy the four axioms.
Let \pi = (x_1, x_2, \dots, x_k).
\{\pi\} \subset V : \pi = concatenation of (x_1), (x_2), \ldots, (x_k). By Complement: F(x_1) \cap \ldots \cap F(x_k) = W_{\pi} = V - \{\pi\}.
(So(C))
All v \in V occur exactly m times in \pi (m > 0). Then \pi = (v_1, v_2, \ldots, v_n)^m due to (A). (So (C) and Completeness).
\pi is any other profile. Some vertices occur exactly m times in \pi and other vertices occur more than m times.
\pi = \pi'(v_1, v_2, \dots, v_n)^m due to (A) [W_{\pi'}] is the set of vertices that occur exactly m times in \pi]
By the above observations and (C), we have F(\pi) = F(\pi') \cap V = W_{\pi'} = AM(\pi).
```

We do not yet have an example that shows whether *Anonymity* is independent from the other axioms.

Complement excluded.

Complement excluded.

• Let *F* be defined by $F(\pi) = V$ for all profiles.

INDEPENDENCE OF AXIOM Complement

Complement excluded.

- Let *F* be defined by $F(\pi) = V$ for all profiles.
- Then it fails Complement but satisfies trivially the other axioms.

(C) excluded.

INDEPENDENCE OF AXIOM (C)

- (C) excluded.
 - Let *F* be defined by

- (C) excluded.
 - Let *F* be defined by

(*k*1):
$$F(x) = V - \{x\}$$
, for any $x \in V$,

(C) excluded.

• Let *F* be defined by

(*k*1): $F(x) = V - \{x\}$, for any $x \in V$,

(*k*2): $F(\pi) = V$, for any profile π of length at least 2.

(C) excluded.

• Let *F* be defined by

```
(k1): F(x) = V - \{x\}, for any x \in V,
```

(*k*2): $F(\pi) = V$, for any profile π of length at least 2.

• Then *F* fails (*C*) but trivially satisfies the other axioms.

INDEPENDENCE OF AXIOM Completeness

Completeness excluded.

(k3):
$$F(\pi) = \{v_1\}$$
, for any π with $\{\pi\} = V$,

(*k*3):
$$F(\pi) = \{v_1\}$$
, for any π with $\{\pi\} = V$,

(*k*4):
$$F(\pi) = V - \{\pi\}$$
, for any π with $\{\pi\} \neq V$.

(*k*3):
$$F(\pi) = \{v_1\}$$
, for any π with $\{\pi\} = V$,

(*k*4):
$$F(\pi) = V - \{\pi\}$$
, for any π with $\{\pi\} \neq V$.

• Let *F* be defined by

(k3):
$$F(\pi) = \{v_1\}$$
, for any π with $\{\pi\} = V$,

(*k*4):
$$F(\pi) = V - \{\pi\}$$
, for any π with $\{\pi\} \neq V$.

• *F* satisfies (*A*) and *Complement*.

(k3):
$$F(\pi) = \{v_1\}$$
, for any π with $\{\pi\} = V$,

(*k*4):
$$F(\pi) = V - \{\pi\}$$
, for any π with $\{\pi\} \neq V$.

- *F* satisfies (*A*) and *Complement*.
- By (*k*3) *F* fails *Completeness*.

(k3):
$$F(\pi) = \{v_1\}$$
, for any π with $\{\pi\} = V$,

(*k*4):
$$F(\pi) = V - \{\pi\}$$
, for any π with $\{\pi\} \neq V$.

- *F* satisfies (*A*) and *Complement*.
- By (*k*3) *F* fails *Completeness*.
- Check Consistency

Introduction

$$\{\pi\} = V = \{\rho\}$$

$$F(\pi) = F(\rho) = F(\pi \rho) = \{v_1\}$$

$$\{\pi\}=V=\{\rho\}$$

$$F(\pi) = F(\rho) = F(\pi \rho) = \{v_1\}$$

$$\{\pi\} = V \text{ and } \{\rho\} \neq V$$

If ρ does not contain v_1 , then $F(\pi) \cap F(\rho) \neq \emptyset$.

$$F(\pi) = F(\pi) \cap F(\rho) = \{v_1\} = F(\pi\rho)$$

$$\{\pi\}=V=\{\rho\}$$

$$F(\pi) = F(\rho) = F(\pi \rho) = \{v_1\}$$

$$\{\pi\} = V \text{ and } \{\rho\} \neq V$$

If ρ does not contain v_1 , then $F(\pi) \cap F(\rho) \neq \emptyset$.

$$F(\pi) = F(\pi) \cap F(\rho) = \{v_1\} = F(\pi\rho)$$

$$\{\pi\}=V=\{\rho\}$$

$$F(\pi) = F(\rho) = F(\pi \rho) = \{v_1\}$$

$$\{\pi\} = V \text{ and } \{\rho\} \neq V$$

If ρ does not contain v_1 , then $F(\pi) \cap F(\rho) \neq \emptyset$.

$$F(\pi) = F(\pi) \cap F(\rho) = \{v_1\} = F(\pi\rho)$$

•
$$F(\pi) = V - \{\pi\}$$
 and $F(\rho) = V - \{\rho\}$.

$$\{\pi\}=V=\{\rho\}$$

Introduction

$$F(\pi) = F(\rho) = F(\pi \rho) = \{v_1\}$$

$$\{\pi\} = V \text{ and } \{\rho\} \neq V$$

If ρ does not contain v_1 , then $F(\pi) \cap F(\rho) \neq \emptyset$.

$$F(\pi) = F(\pi) \cap F(\rho) = \{v_1\} = F(\pi\rho)$$

- $F(\pi) = V \{\pi\}$ and $F(\rho) = V \{\rho\}$.
- $F(\pi) \cap F(\rho) \neq \emptyset$ if and only if $\{\pi\} \cup \{\rho\} = \{\pi\rho\}$ is a proper subset of V.

$$\{\pi\} = V = \{\rho\}$$

$$F(\pi) = F(\rho) = F(\pi \rho) = \{v_1\}$$

$$\{\pi\} = V \text{ and } \{\rho\} \neq V$$

If ρ does not contain v_1 , then $F(\pi) \cap F(\rho) \neq \emptyset$.

$$F(\pi) = F(\pi) \cap F(\rho) = \{v_1\} = F(\pi\rho)$$

- $F(\pi) = V \{\pi\}$ and $F(\rho) = V \{\rho\}$.
- $F(\pi) \cap F(\rho) \neq \emptyset$ if and only if $\{\pi\} \cup \{\rho\} = \{\pi\rho\}$ is a proper subset of V.
- Again we have $F(\pi \rho) = F(\pi) \cap F(\rho)$.

PLAN

Introduction

- Introduction
 - Scenario
 - Motivation
- 2 Preliminaries
 - Definitions
- 3 Complete Graphs
 - Antimedian Function on Complete Graphs
 - Axiomatic characterization
- 4 Cocktail-party Graphs
 - Median Function on Cocktail-Party Graphs
 - Antimedian Function on Cocktail-Party Graphs
- 5 Conclusion

COCKTAIL-PARTY GRAPHS

DEFINITIONS

Cocktail-party graph $K_{(n\times 2)}$

Cocktail-party graph $K_{(n \times 2)}$

• Complete graph K_{2n} with $V = \{v_1, ..., v_n, v_{n+1}, ..., v_{2n}\}.$

DEFINITIONS

Cocktail-party graph $K_{(n\times 2)}$

- Complete graph K_{2n} with $V = \{v_1, \dots, v_n, v_{n+1}, \dots, v_{2n}\}.$
- Delete perfect matchings $v_1v_{n+1}, ..., v_nv_{2n}$.

Cocktail-party graph $K_{(n \times 2)}$

- Complete graph K_{2n} with $V = \{v_1, ..., v_n, v_{n+1}, ..., v_{2n}\}.$
- Delete perfect matchings $v_1v_{n+1}, \ldots, v_nv_{2n}$.
- Arises in the handshake problem.

Cocktail-party graph $K_{(n\times 2)}$

- Complete graph K_{2n} with $V = \{v_1, \dots, v_n, v_{n+1}, \dots, v_{2n}\}.$
- Delete perfect matchings $v_1v_{n+1}, \ldots, v_nv_{2n}$.
- Arises in the handshake problem.
- Distance-transitive, and hence also Distance-regular.

DEFINITIONS

• Mates (v, \tilde{v}) : $\{v_i, v_{n+i}\}$ $(1 \le i \le n)$ is a pair of *mates*.

- Mates (v, \tilde{v}) : $\{v_i, v_{n+i}\}$ $(1 \le i \le n)$ is a pair of *mates*.
- $\tilde{\pi}$: Obtained from π by replacing each element by its mate.

- Mates (v, \tilde{v}) : $\{v_i, v_{n+i}\}$ $(1 \le i \le n)$ is a pair of *mates*.
- $\tilde{\pi}$: Obtained from π by replacing each element by its mate.
- Mating pair: The profile (v, \tilde{v}) .

- Mates (v, \tilde{v}) : $\{v_i, v_{n+i}\}$ $(1 \le i \le n)$ is a pair of *mates*.
- $\tilde{\pi}$: Obtained from π by replacing each element by its mate.
- Mating pair: The profile (v, \tilde{v}) .
- Mating profile: The concatenation of mating pairs.

REMOTENESS

Lemma 5.1

Let G be a cocktail-party graph with vertex set V, and let $\pi = (v, \tilde{v})$ be a mating pair. Then $r(u, \pi) = 2$, for all v in V.

COMPUTING MEDIAN AND ANTIMEDIAN

COMPUTING MEDIAN AND ANTIMEDIAN

• π : a profile on the cocktail-party graph.

- π : a profile on the cocktail-party graph.
- $\bullet \ \pi' : \pi \setminus (v, \tilde{v}).$

- π : a profile on the cocktail-party graph.
- π' : $\pi \setminus (v, \tilde{v})$.
- $M(\pi) = M(\pi')$ and $AM(\pi) = AM(\pi')$.

- π : a profile on the cocktail-party graph.
- π' : $\pi \setminus (v, \tilde{v})$.
- $M(\pi) = M(\pi')$ and $AM(\pi) = AM(\pi')$.
- Mate-free subprofile ρ (after deleting all mates in π)

- π : a profile on the cocktail-party graph.
- π' : $\pi \setminus (v, \tilde{v})$.
- $M(\pi) = M(\pi')$ and $AM(\pi) = AM(\pi')$.
- Mate-free subprofile ρ (after deleting all mates in π)
- $M(\pi) = Pl(\rho)$ (the vertices with highest occurrence in ρ ,)

- π : a profile on the cocktail-party graph.
- π' : $\pi \setminus (v, \tilde{v})$.

Introduction

- $M(\pi) = M(\pi')$ and $AM(\pi) = AM(\pi')$.
- Mate-free subprofile ρ (after deleting all mates in π)
- $M(\pi) = Pl(\rho)$ (the vertices with highest occurrence in ρ ,)
- $AM(\pi) = Pl(\tilde{\rho})$ (the mates of the vertices with highest occurrence)

Computing $M(\pi)$ and $AM(\pi)$

Graph $K_{3\times 2}$

COMPUTING $M(\pi)$ AND $AM(\pi)$

Graph $K_{3\times 2}$

Profile $\pi = (a_1, b_1, a_2, b_3)$

COMPUTING $M(\pi)$ AND $AM(\pi)$

$$M(\pi) = \{a_2, b_3\}$$
 and $AM(\pi) = \{b_2, a_3\}$

MEDIAN FUNCTION

Lemma 5.2

Let F be the median function defined on the vertex set V of a cocktail-party graph G. Then $F(v, \tilde{v}) = V$, for any $v \in V$.

MEDIAN FUNCTION

Lemma 5.2

Let F be the median function defined on the vertex set V of a cocktail-party graph G. Then $F(v, \tilde{v}) = V$, for any $v \in V$.

Proof.

Direct consequence of Lemma 5.1.

Lemma 5.3

Let F be the median function defined on the vertex set V of a cocktail-party graph G. Then $F(\pi) = Pl(\pi)$, for all mate-free profiles π .

Lemma 5.3

Let F be the median function defined on the vertex set V of a cocktail-party graph G. Then $F(\pi) = Pl(\pi)$, for all mate-free profiles π .

Proof.

```
\pi = (x_1, x_2, \dots, x_k) be a mate-free profile.
\{\pi\} = \{y_1, y_2, \dots, y_\ell\}
f_i the number of occurrences of y_i in \pi.
For any vertex w outside the profile \pi, we have d(w, y_i) \ge 1, for each vertex y_i in \pi.
f = \sum_{i=1}^{\ell} f_i.
r(w,\pi) > f.
u be any vertex in \pi.
d(u, x_i) = 1, for any x_i \neq u.
r(u, \pi) = f - f_i, for u = y_i. (vertices that minimize remoteness are all in \pi).
r(u,\pi)=f-f_j is minimum when f_j is maximum. (vertices that minimize remoteness are precisely those that
occur most often in \pi).
```

AXIOMS BY LEMMA 5.2 AND LEMMA 5.3

$$(A_1)$$
: $F(v, \tilde{v}) = V$, for all $v \in V$.

AXIOMS BY LEMMA 5.2 AND LEMMA 5.3

 (A_1) : $F(v, \tilde{v}) = V$, for all $v \in V$.

 (A_2) : $F(\pi) = Pl(\pi)$, for all mate-free profiles π .

 (A_1) : $F(v, \tilde{v}) = V$, for all $v \in V$.

(A_2): $F(\pi) = Pl(\pi)$, for all mate-free profiles π .

Remark 5.4

Let F be a consensus function defined on the vertex set V of a cocktail-party graph G such that F satisfies A_1 and A_2 . Then F satisfies the Betweenness axiom (B).

4 AXIOMS

Theorem 5.5

Let F be a consensus function on a cocktail-party graph G with vertex set V. Then F is the median function if and only if F satisfies axioms (A), (C), (A_1) and (A_2) .

Theorem 5.5

The median function satisfies all the four axioms.

Let F be a consensus function on a cocktail-party graph G with vertex set V. Then F is the median function if and only if F satisfies axioms (A), (C), (A_1) and (A_2) .

Proof.

```
F a function satisfying the four axioms.
If \pi contains a pair of mates v, \tilde{v}, we can permute \pi as (v, \tilde{v})\rho
\rho is the subprofile of \pi obtained by deleting the elements v and \tilde{v} from their respective positions.
(A_1): F(v, \tilde{v}) = V.
So F(v, \tilde{v}) \cap F(\rho) \neq \emptyset.
By (C), F((v, \tilde{v})\rho) = F(v, \tilde{v}) \cap F(\rho) = F(\rho).
By (A), F(\pi) = F(v, \tilde{v}) \cap F(\rho) = F(\rho).
Repeat this process until we end up with a subprofile \sigma of \pi that is either a mating pair or mate-free.
If \hat{\sigma} is mate-free, F(\pi) = F(\sigma). By (A_2), F(\sigma) = Pl(\sigma) = M(\sigma) = M(\pi).
If \sigma is a mating pair, F(\sigma) = V = F(\pi) = M(\pi).
```

INDEPENDENCE OF AXIOMS

Examples

Examples

• We want to know whether the axioms involved are independent.

INDEPENDENCE OF AXIOMS

Examples

- We want to know whether the axioms involved are independent.
- In all examples *G* is a cocktail-party graph with vertex set *V* having at least 4 vertices.

Cocktail-party Graphs

000000000

Independence of axiom (A_1)

 (A_1) excluded.

INDEPENDENCE OF AXIOM (A_1)

 (A_1) excluded.

• Define $F(\pi) = Pl(\pi)$, for all profiles π .

INDEPENDENCE OF AXIOM (A_1)

 (A_1) excluded.

- Define $F(\pi) = Pl(\pi)$, for all profiles π .
- F satisfies (A), (C) and (A_2) .

(A_1) excluded.

- Define $F(\pi) = Pl(\pi)$, for all profiles π .
- F satisfies (A), (C) and (A_2) .
- Since $F(v, \tilde{v}) = \{v, \tilde{v}\} \neq V$, for any vertex v, the function F does not satisfy (A_1) .

 (A_2) excluded.

INDEPENDENCE OF AXIOM (A_2)

 (A_2) excluded.

• Define $F(\pi) = V$, for all profiles π .

 (A_2) excluded.

- Define $F(\pi) = V$, for all profiles π .
- F satisfies (A), (C) and (A_1) .

Independence of axiom (A_2)

 (A_2) excluded.

- Define $F(\pi) = V$, for all profiles π .
- F satisfies (A), (C) and (A_1) .
- For any two adjacent vertices *u* and *v* in *G*,

$$F(u,v) = V \neq \{u,v\} = Pl(u,v).$$
 (6)

So F does not satisfy (A_2) .

(C) excluded.

- (C) excluded.
 - Define

- (C) excluded.
 - Define

(c1): $F(v, \tilde{v}) = V$, for all vertices v in V,

INDEPENDENCE OF AXIOM (C)

- (*C*) excluded.
 - Define
 - (*c*1): $F(v, \tilde{v}) = V$, for all vertices v in V,
 - (*c*2): $F(\pi) = Pl(\pi)$, for all profiles π that are not a mating pair.

INDEPENDENCE OF AXIOM (C)

- (*C*) excluded.
 - Define

```
(c1): F(v, \tilde{v}) = V, for all vertices v in V,
```

(c2): $F(\pi) = Pl(\pi)$, for all profiles π that are not a mating pair.

• F satisfies (A), (A_1) and (A_2) .

Define

```
(c1): F(v, \tilde{v}) = V, for all vertices v in V, (c2): F(\pi) = Pl(\pi), for all profiles \pi that are not a mating pair.
```

- F satisfies (A), (A_1) and (A_2) .
- Take two vertices u and v that are not mates, and let $\pi = (u, \tilde{u}, v, \tilde{v})$.

- Define
 - (c1): $F(v, \tilde{v}) = V$, for all vertices v in V,
 - (c2): $F(\pi) = Pl(\pi)$, for all profiles π that are not a mating pair.
- F satisfies (A), (A_1) and (A_2) .
- Take two vertices u and v that are not mates, and let $\pi = (u, \tilde{u}, v, \tilde{v}).$
- \bullet by (c2), we have

$$F(\pi) = Pl(\pi) = \{u, \tilde{u}, v, \tilde{v}\} \neq V = F(u, \tilde{u}) \cap F(v, \tilde{v}). \tag{7}$$

So *F* does not satisfy *Consistency*.

Independence of axiom (A)

The case of *Anonymity*

• The independence of *Anonymity* is a non-trivial issue.

- The independence of *Anonymity* is a non-trivial issue.
- We do not yet have an example that shows independence of Anonymity.

INDEPENDENCE OF AXIOM (A)

- The independence of *Anonymity* is a non-trivial issue.
- We do not yet have an example that shows independence of Anonymity.
- Not to expect that it follows from the other axioms.

- The independence of *Anonymity* is a non-trivial issue.
- We do not yet have an example that shows independence of Anonymity.
- Not to expect that it follows from the other axioms.
- Open problem here.

(*A*₃): $F(\pi) = Pl(\tilde{\pi})$, for all mate-free profiles π .

(A₃): $F(\pi) = Pl(\tilde{\pi})$, for all mate-free profiles π .

Theorem 5.6

Let F be a consensus function on a cocktail-party graph G with vertex set V. Then F is the antimedian function if and only if F satisfies axioms (A), (C), (A_1) and (A_3) .

Examples

Examples

• We want to know whether the axioms involved are independent.

Examples

- We want to know whether the axioms involved are independent.
- In all examples *G* is a cocktail-party graph with vertex set *V* having at least 4 vertices.

INDEPENDENCE OF AXIOM (A_1)

 (A_1) excluded.

• $F(\pi) = Pl(\tilde{\pi})$, for all profiles π .

- $F(\pi) = Pl(\tilde{\pi})$, for all profiles π .
- F satisfies (A), (C) and (A_3) .

- $F(\pi) = Pl(\tilde{\pi})$, for all profiles π .
- F satisfies (A), (C) and (A_3) .
- Since $F(v, \tilde{v}) = {\tilde{v}, v} \neq V$, for any vertex v, the function F does not satisfy (A_1) .

000000

INDEPENDENCE OF AXIOM (A_3)

 (A_3) excluded.

• $F(\pi) = V$, for all profiles π .

- $F(\pi) = V$, for all profiles π .
- F satisfies axioms (A), (C) and (A_1) .

- $F(\pi) = V$, for all profiles π .
- F satisfies axioms (A), (C) and (A_1) .
- ullet Take any two adjacent vertices u and v in G. Then

$$F(u,v) = V \neq \{\tilde{u}, \tilde{v}\} = Pl(\tilde{u}, \tilde{v}). \tag{8}$$

- $F(\pi) = V$, for all profiles π .
- F satisfies axioms (A), (C) and (A_1) .
- Take any two adjacent vertices *u* and *v* in *G*. Then

$$F(u,v) = V \neq \{\tilde{u}, \tilde{v}\} = Pl(\tilde{u}, \tilde{v}). \tag{8}$$

• So F does not satisfy (A_3) .

000000

INDEPENDENCE OF AXIOM (C)

- (*C*) excluded.
 - Define the function *F* on *G* by

- (C) excluded.
 - Define the function *F* on *G* by (c1) $F(v, \tilde{v}) = V$, for all vertices v in V,

Independence of axiom (C)

- (*C*) excluded.
 - Define the function *F* on *G* by
 - (c1) $F(v, \tilde{v}) = V$, for all vertices v in V,
 - (*c*2) $F(\pi) = Pl(\tilde{\pi})$, for all profiles π that are not a mating pair.

- Define the function *F* on *G* by
 - (c1) $F(v, \tilde{v}) = V$, for all vertices v in V,
 - (c2) $F(\pi) = Pl(\tilde{\pi})$, for all profiles π that are not a mating pair.
- F satisfies (A), (A_1) and (A_3) .

- Define the function *F* on *G* by
 - (c1) $F(v, \tilde{v}) = V$, for all vertices v in V,
 - (*c*2) $F(\pi) = Pl(\tilde{\pi})$, for all profiles π that are not a mating pair.
- F satisfies (A), (A_1) and (A_3) .
- Take two vertices u and v that are not mates, and let $\pi = (u, \tilde{u}, v, \tilde{v})$.

- Define the function *F* on *G* by
 - (c1) $F(v, \tilde{v}) = V$, for all vertices v in V,
 - (c2) $F(\pi) = Pl(\tilde{\pi})$, for all profiles π that are not a mating pair.
- F satisfies (A), (A_1) and (A_3) .
- Take two vertices u and v that are not mates, and let $\pi = (u, \tilde{u}, v, \tilde{v}).$
- Then, by (c2), we have

$$F(\pi) = Pl(\tilde{\pi}) = \{\tilde{u}, u, \tilde{v}, v\} \neq V = F(u, \tilde{u}) \cap F(v, \tilde{v}). \tag{9}$$

Independence of axiom (C)

(C) excluded.

- Define the function *F* on *G* by
 - (c1) $F(v, \tilde{v}) = V$, for all vertices v in V,
 - (*c*2) $F(\pi) = Pl(\tilde{\pi})$, for all profiles π that are not a mating pair.
- F satisfies (A), (A_1) and (A_3) .
- Take two vertices u and v that are not mates, and let $\pi = (u, \tilde{u}, v, \tilde{v})$.
- Then, by (c2), we have

$$F(\pi) = Pl(\tilde{\pi}) = \{\tilde{u}, u, \tilde{v}, v\} \neq V = F(u, \tilde{u}) \cap F(v, \tilde{v}). \tag{9}$$

• So *F* does not satisfy *Consistency*.

INDEPENDENCE OF AXIOM (A)

We do not have an example yet that shows the independency of *Anonymity*. We leave this as an open problem.

PLAN

- Introduction
 - Scenario
 - Motivation
- 2 Preliminaries
 - Definitions
- 3 Complete Graphs
 - Antimedian Function on Complete Graphs
 - Axiomatic characterization
- 4 Cocktail-party Graphs
 - Median Function on Cocktail-Party Graphs
 - Antimedian Function on Cocktail-Party Graphs
- 6 Conclusion

CONCLUSION

Introduction

CONCLUSION

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

• The median and antimedian functions satisfy *Anonymity* and Consistency on any metric space.

Cocktail-party graphs - two more axioms

CONCLUSION

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

Cocktail-party graphs - two more axioms

• (A1) and (A2) for the median case.

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

Cocktail-party graphs - two more axioms

- (A1) and (A2) for the median case.
- (*A*1) and (*A*3) for the antimedian case.

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

Cocktail-party graphs - two more axioms

- (*A*1) and (*A*2) for the median case.
- (*A*1) and (*A*3) for the antimedian case.
- All these axioms are natural and intuitively appealing.

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

Cocktail-party graphs - two more axioms

- (*A*1) and (*A*2) for the median case.
- (A1) and (A3) for the antimedian case.
- All these axioms are natural and intuitively appealing.

Complete graphs

Introduction

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

Cocktail-party graphs - two more axioms

- (*A*1) and (*A*2) for the median case.
- (A1) and (A3) for the antimedian case.
- All these axioms are natural and intuitively appealing.

Complete graphs

 A simple axiomatic characterization of the antimedian function.

Introduction

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

Cocktail-party graphs - two more axioms

- (*A*1) and (*A*2) for the median case.
- (A1) and (A3) for the antimedian case.
- All these axioms are natural and intuitively appealing.

Complete graphs

- A simple axiomatic characterization of the antimedian function.
- Two more axioms: Completeness and Complement.

Introduction

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

Cocktail-party graphs - two more axioms

- (A1) and (A2) for the median case.
- (*A*1) and (*A*3) for the antimedian case.
- All these axioms are natural and intuitively appealing.

Complete graphs

- A simple axiomatic characterization of the antimedian function.
- Two more axioms: *Completeness* and *Complement*.

Open Problem: Independence of *Anonymity* Axiom

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

Cocktail-party graphs - two more axioms

- (A1) and (A2) for the median case.
- (*A*1) and (*A*3) for the antimedian case.
- All these axioms are natural and intuitively appealing.

Complete graphs

- A simple axiomatic characterization of the antimedian function.
- Two more axioms: *Completeness* and *Complement*.

Open Problem: Independence of *Anonymity* Axiom

• Trial examples for independence of (*A*).

• The median and antimedian functions satisfy *Anonymity* and *Consistency* on any metric space.

Cocktail-party graphs - two more axioms

- (A1) and (A2) for the median case.
- (*A*1) and (*A*3) for the antimedian case.
- All these axioms are natural and intuitively appealing.

Complete graphs

- A simple axiomatic characterization of the antimedian function.
- Two more axioms: *Completeness* and *Complement*.

Open Problem: Independence of *Anonymity* Axiom

• Trial examples for independence of (*A*).

REFERENCES I

- [1] Arrow, K.: Social Choice and Individual Values, In: No. 12 in Cowles Commission for Research in Economics -Monographs, Wiley, New York, First Ed. (1951)
- [2] Arrow, K.J., Sen, A.K., Suzumura K. (eds.): Handbook of Social Choice and Welfare, Volume 1, North Holland, Amsterdam. (2002)
- [3] Arrow, K.J., Sen, A.K., Suzumura K. (eds.): Handbook of Social Choice and Welfare, Volume 1, North Holland, Amsterdam. (2005)
- [4]Balakrishnan, K., Brešar, B., Changat, M., Klavžar, S., Imrich, W., Kovše, M., Subhamathi, A.R.: On the Remoteness Function in Median Graphs. Discrete Appl. Math. 157, 3679–3688 (2009)

REFERENCES II

- [5] Balakrishnan, K., Brešar, B., Changat, M., Klavžar, S., Kovše, M., Subhamathi, A.R.: Computing Median and Antimedian Sets in Median Graphs. Algorithmica. 57, 207–216 (2010)
- [6] Balakrishnan, K., Brešar, B., Changat, M., Klavžar, S., Kovše, M., Subhamathi, A.R.: Simultaneous Embedding of Graphs as Median and Antimedian Subgraphs. Networks. 56 90–94 (2010)
- [7] Balakrishnan, K., Changat, M., Klavžar, S., Joseph, M., Peterin, I., Prasanth, G.N., Špacapan, S.: Antimedian Graphs. Australas. J. Combin., 41 159–170 (2008)

REFERENCES III

- [8] Balakrishnan, K., Changat, M., Mulder, H.M., Subhamathi, A.R.: Axiomatic Characterization of the Antimedian Function on Paths and Hypercubes. Discrete Math. Algorithm. Appl. 04, 1250054, 20 pages (2012)
- [9] Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer Verlag, Berlin, Heidelberg, New York (1997)
- [10] Holzman, R.: An Axiomatic Approach to Location on Networks. Math. Oper. Res. 15 553–563 (1990)
- [11] Klavžar, S., Mulder, H.M.: Median Graphs-Characterizations, Location Theory and Related Structures. J. Combin. Math. Combin. Comput. 30 103–127 (1999)

REFERENCES IV

- [12] McMorris, F.R, Mulder, H.M., Novick, B., Powers, R.C.: Five Axioms for Location Functions on Median Graphs. *To appear in Discrete Math. Algorithms Appl.*
- [13] McMorris, F.R, Mulder, H.M., Novick, B., Powers, R.C., Vohra, R.V.: *in preparation*.
- [14] McMorris, F.R, Mulder, H.M., Ortega, O.: Axiomatic Characterization of the Mean Function on Trees. Discrete Math. Algorithms Applications 2 313–329 (2010)
- [15] McMorris, F.R, Mulder, H.M., Ortega, O.: Axiomatic Characterization of the ℓ_p -Function on Trees. Networks. 60 94 102 (2012)

REFERENCES V

- [16] McMorris, F.R, Mulder, H.M., Roberts, F.S.: The Median Procedure on Median Graphs. Discrete Appl. Math. 84 165–181 (1998)
- [17] McMorris, F.R, Mulder, H.M., Vohra, R.V. Axiomatic Characterization of Location Functions. In: Kaul, H., Mulder, H.M. (eds.) Advances in Interdisciplinary Applied Discrete Mathematics, Interdisciplinary Mathematical Sciences Vol. 11, World Scientific Publishing, Singapore, pp. 71–91 (2010)
- [18] McMorris, F.R, Roberts, F.S., Wang, C.: The Center Function on Trees. Networks. 38, 84–87 (2001)
- [19] Minieka, E.: Anticenters and Antimedians of a Network. Networks. 13 35–364 (1983)

REFERENCES VI

- [20] Mulder, H.M.: The Interval Function of a Graph. Math. Centre Tracts 132, Math. Centre, Amsterdam, Netherlands (1980)
- [21] Mulder, H.M.: Median Graphs. A Structure Theory, In: Kaul, H., Mulder, H.M. (eds.) Advances in Interdisciplinary Applied Discrete Mathematics. Interdisciplinary Mathematical Sciences Vol. 11, World Scientific Publishing, Singapore 93–125 (2010)
- [22] Mulder, H.M., Novick, B.A.: An Axiomization of the Median Function on the *n*-Cube. Discrete Appl. Math. 159 139–144 (2011)

REFERENCES VII

- [23] Mulder, H.M., Novick, B.A.: A Tight Axiomatization of the Median Function on Median Graphs. Discrete Appl. Math. 161 838 – 846 (2013)
- [24] Mulder, H.M., Reid, K.B., Pelsmajer, M.J.: Axiomatization of the Center Function on Trees. Australasian J. Combin. 41 223–226 (2008)
- [25] Rao,S.B., Vijayakumar, A.: On the Median and the Antimedian of a Cograph. Int. J. Pure Appl. Math. 46 703–710 (2008)
- [26] Vohra, R.: An Axiomatic Characterization of Some Locations in Trees. European J. Operational Research. 90 78–84 (1996)

REFERENCES VIII

[27] Shilpa, M., Changat, M., Narasimha-Shenoi, P.G.: Axiomizatic Characterization of the Center Function on Some Graph Classes, *Manuscript Submitted*.

THANK YOU

Introduction

Conclusion