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Motivation

Introduction

Product graphs have been used to generate mathematical models1 of complex networks.

What are Complex networks?

Defined as networks with non-trivial topology and dynamics.
Their ubiquity suggests that they are the skeletons of complex systems in the real-world.

Examples

Biological Networks like food web
Transportation Network like railway network
Social Networks
Telecommunications
Informational networks

We propose a method of network generation for modelling complex networks which we call corona graphs.

We investigated the spectra, Laplacian spectra and signless Laplacian spectra of corona graphs to find their topological properties.

1
Leskovec, Jure and Chakrabarti, Deepayan and Kleinberg, Jon and Faloutsos, Christos and Ghahramani, Zoubin.:

Kronecker graphs: An approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010).
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Corona graphs

Corona Graphs
Let G = (V , E) be a graph having set of nodes V = {v1, ..., vn} such that |V | = n, and E the set of edges. The adjacency
matrix A(G) = [avi vj ] of G having dimension |V | × |V | is defined by avi ,vj = 1 if (vi , vj ) ∈ E otherwise avi ,vj = 0 when

columns and rows are labelled by nodes of G .

The corona product of the two graphs1 G1, G2, denoted by G1 ◦ G2 is obtained by taking an instance of G1 and |VG1
|

instances of G2 and hence connecting the i th node of G1 to every node in the i th instance of G2 for each i .

We extend this definition to define corona graphs. Let G (0) = G . Given a basic graph G , the corona graphs generated
by G are given by

G (m+1) = G (m) ◦ G (1)

where m(≥ 0) is a large natural number.

1
Frucht, Roberto and Harary, Frank.: On the corona of two graphs. Aequationes Math. 4, 322-325 (1970).
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Corona graphs

Corona Graphs

Observations

The number of nodes in G (m) is
|V (m)| = n(n + 1)m. (2)

If |E | and n are the number of edges and nodes in the basic graph G respectively, then number of edges in

G (m) is
|E (m)| = (|E | + (|E | + n)((n + 1)m − 1)). (3)

Connectivity of G (m): Since G is connected, corona graphs generated by G are connected graphs. Evidently, if
basic graph G is disconnected, it generates disconnected corona graphs.
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Corona graphs

Corona graphs

Observations

Degree sequence of corona graphs: Assume that degree sequence of G (0) = G is given by {d(0)
i1

, d
(0)
i2

,. . . ,d
(0)
in
}

where d
(j)
il

represents the degree of node il at jth corona product, and x is the total distinct degrees. The

degree sequence for G (m) is obtained as {D(1)
ij
, (D

(2)
ij
, . . . , n times), . . . , (D

(x)
ij
,. . . ,n(n + 1)m−1 times)},

where D
(1)
ij

= dij
+ mn, D

(2)
ij

= dij
+ (m − 1)n, . . . ,D

(x)
ij

= dij
+ 1.

Degree Distribution

P(k) =

∑n
j=1

(
δ
k,D

(1)
ij

+ nδ
k,D

(2)
ij

+ n(n + 1)δ
k,D

(3)
ij

+ . . . + n(n + 1)(m−1)δ
k,D

(x)
ij

)
n(n + 1)m

(4)
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Spectra of Corona Graphs

Graph spectra

Let G be a simple connected graph. The adjacency matrix A(G (m)) associated with G (m) is given by

A(G(m)) =

 A(G (m−1)) 1T
n(n+1)m−1 ⊗ I

n(n+1)m−1

1
n(n+1)m−1 ⊗ I

n(n+1)m−1 A(G)⊗ I
n(n+1)m−1



where A(G (m−1)) is the adjacency matrix of G (m−1), I
n(n+1)m−1 is the identity matrix and 1

n(n+1)m−1 is the column vector

of 1s of length n(n + 1)m−1. We denote spectra of corona graphs i.e. spectrum of A(G (m)) by

σ(G (m)) = {λ1, λ2, . . . , λn(n+1)m} (5)

where λ1 ≤ λ2 ≤ . . . ≤ λn(n+1)m and spectral radius of A(G (m)) is denoted as ρ(G (m)).
The spectrum of corona product of two graphs G = G1 ◦ G2 where G1 is any graph and G2 is a regular graph, and the Laplacian
spectrum of corona product of any two graphs are provided by Barik et al.1

Inspired by their work, we derive σ(G (m)) when the basic graph G is regular.

Application of spectral radius

Smaller is its value,larger is robustness against propagation of viruses2.
Helps in finding the community structure of the network.

1
Barik, S and Pati, S and Sarma, BK.: The spectrum of the corona of two graphs. SIAM J. Discrete Math. 21, 47–56,

2007.
2

A. Jamakovic, Characterization of complex networks: application to robustness analysis, PhD thesis, Delft University of
Technology, 2008.
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Spectra of Corona Graphs

Graph spectra

Theorem

Let G (0) = G be a regular graph such that σ(G) = (µ1, µ2, . . . , µn = r) (where, µ1 ≤ µ2 ≤ . . . ≤ µn = r) and spectral

radius of G be ρ(G). Then, σ(G (m)) is given by

(a) λi =

µi + r
∑m−1

a=0 2a ±
(∑m−1

c=1 zc +
√

((r − µi )±
∑m−1

c=1 zc )2 + 22m.n

)
2m

∈ σ(G (m)), with multiplicity 1 for

i = 1, . . . , n(n + 1)m−1

where,

z1 =
√

(r − µi )
2 + 4n,. . . ,zm−1 = zm−2 +

√
((r − µi )± zm−2)2 + n.22(m−2).

(b) µi ∈ σ(G (m)), with multiplicity n(n + 1)m−1 for i = 1, . . . , n − 1.

The spectral radius of G (m) is given by

ρ(G (m)) =
µn + r

∑m−1
a=0 2a +

(∑m−1
c=1 zc +

√
((r − µi )−

∑m−1
c=1 zc )2 + 22m.n

)
2m

where zc is defined above.
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Spectra of Corona Graphs

Graph spectra of star graphs

The following theorem gives the spectra of star graphs Sk with k ≥ 3 as a special case of irregular graphs.

Theorem

Let k ≥ 3 be an integer. The spectrum of the graph Sk ◦ Sk consists of the following eigenvalues

(a) λz = X z
1 +

µi
3
∈ σ(G (1)) with multiplicity 1, and

(b) 0 ∈ σ(G (1)) with multiplicity k(k − 2).

where, λz are the eigenvalues for G (1) with z = 1, 2, 3 for the 3 angles i.e. θ
3
, 2π+θ

3
, 4π+θ

3
as shown in following

sub-expressions

X z = 2
3

cos yπ+θ
3

√
µ2
i + (6k − 3), θ = cos−1

(
2µ3

i +µi (18−9k)+(54k−54)

2(µ2
i

+(6k−3))
3
2

)
− yπ

where y = 0, 2, 4. Here,

λz ∈
[
−µi +

2µi
3
− 2
√

(6k−3)
3

, µi +
2
√

(6k−3)
3

]
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Spectra of Corona Graphs

Graph spectra of star graphs

Corollary

Let G be the basic star graph Sk for each k ≥ 3 such that σ(G) = {µ1, µ2, . . . , µn}. Let m ≥ 1.Then σ(G (m)) is given by

(a) λz,1 = X z
1 +

µi
3

, . . . , λz,m =
∑m−1

j=0 ( 1
3

)jX z
m−j + ( 1

3
)m−1(

µi
3

) ∈ σ(G (m)) with multiplicity 1 for each of them,

(b) 0 ∈ σ(G (1)) with multiplicity k(k − 2)(k + 1)(m−1).

where, λz,j are the eigenvalues for G (m) such that j represents jth corona product with z = 1, 2, 3 for the 3 angles i.e.
θj
3
,

2π+θj
3

,
4π+θj

3
as shown in following sub-expressions

X z
l = 2

3
cos

yπ+θl
3

√(∑l−1
j=1 ( 1

3
)j−1X z

l−j
+ ( 1

3
)l−1µi

)2 + (6k − 3),

X z
1 = 2

3
cos

yπ+θ1
3

√
µ2
i + (6k − 3)

θm = cos−1
(

2(
∑m−1

j=0
( 1

3
)j Xz

m−j +( 1
3

)m−1(
µi
3

))3−(9k−18)(
∑m−1

j=0
( 1

3
)j Xz

m−j +( 1
3

)m−1(
µi
3

))+(54k−54)

2((
∑m−1

j=0
( 1

3
)j Xz

m−j
+( 1

3
)m−1(

µi
3

))2+(6k−3))
3
2

)
− yπ,

where m is the mth corona product and y = 0, 2, 4 for the three angles.

Here, λz,j ∈
[
−µi +

2µi
3j
− 2j
√

(6k−3)
3

, µi +
2j
√

(6k−3)
3

]
, where j = 1, . . . ,m.
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Spectra of Corona Graphs

Laplacian spectra

The Laplacian matrix L(G (m)) associated with G (m) has the form

L(G(m)) =

 L(G(m−1)) + nI
n(n+1)m−1 −1T

n(n+1)m−1 ⊗ I
n(n+1)m−1

−1
n(n+1)m−1 ⊗ I

n(n+1)m−1 (L(G) + In)⊗ I
n(n+1)m−1



where L(G (m−1)) is the Laplacian matrix of G (m−1), In and I
n(n+1)m−1 are the identity matrices. We denote the Laplacian

spectra L(G (m)) of G (m) by

S(G (m)) = {λ1, λ2, . . . , λn(n+1)(m)} (6)

where 0 = λ1 ≤ λ2 ≤ . . . ≤ λn(n+1)(m) . The second smallest eigenvalue (λ2) of L(G) is termed as the algebraic connectivity

of a graph.

Application of algebraic connectivity

Indicates the robustness against disconnecting the network.
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Spectra of Corona Graphs

Laplacian spectra

In the following theorem, we determine the elements of S(G (m)) in terms of the Laplacian eigenvalues of the basic graph, G (0) = G
where S(G) = {0 = ν1, ν2, . . . , νn} (where, ν1 ≤ ν2 ≤ . . . ≤ νn) is the Laplacian spectra of G .

Theorem

Let G be a simple connected graph. We denote the algebraic connectivity of G and G (m) by a(ν2) and a(λ2) respectively. The,

Laplacian spectra S(G (m)) of G is given by

(a)
νi + (n + 1)

∑m−1
i=0 2i ±

∑m
i=1 zi

2m
∈ S(G (m)) with multiplicity 1 for i = 1, . . . , n(n + 1)m−1. where,

z1 =
√

(νi + n + 1)2 − 4νi ,. . . ,

zm =
√

(νi + (n + 1)
∑m−1

i=0 2i ±
∑m−1

i=1 zi )
2 − 2(m+1)(νi + (n + 1)

∑m−2
i=0 2i ±

∑m−1
i=1 zi )

(b) νi + 1 ∈ S(G (m)) with multiplicity n(n + 1)m−1 for i = 2, . . . , n.

Hence, the algebraic connectivity of S(G (m)) is

a(λ2) =
ν2 + (n + 1)

∑m−1
i=0 2i −

∑m
i=1 zi

2m
< 1

where zi can be defined as above.
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Spectra of Corona Graphs

Signless Laplacian spectra

The signless Laplacian matrix SQ (G (m)) of G (m) is of the form

SQ(G(m)) =

SQ(G(m−1)) + nI
n(n+1)m−1 1T

n(n+1)m−1 ⊗ I
n(n+1)m−1

1
n(n+1)m−1 ⊗ I

n(n+1)m−1 (SQ(G) + In)⊗ I
n(n+1)m−1



where SQ (G (m−1)) is the signless Laplacian matrix of G (m−1), In and I
n(n+1)m−1 are the identity matrices. The spectrum of

signless Laplacian of Q(G (m)) for G (m) is denoted by

SQ (G (m)) = {λ1, λ2, . . . , λn(n+1)(m)} (7)

where λ1 ≤ λ2 ≤ . . . ≤ λn(n+1)m . We will define the SQ (G (m)) inspired by the work of Cui et al. on two graphs1 and here
taking the basic initial graph G as the r -regular graph.

Application of signless Laplacian spectra

Used for determining the dynamical behaviour of networks.
Used for determining the clusters in the data2.

1
Cui, Shu-Yu and Tian, Gui-Xian.: The spectrum and the signless Laplacian spectrum of coronae. Linear Algebra Appl.

437, 1692–1703 (2012).
2

Lucińska, Ma lgorzata, and S lawomir T. Wierzchoń. Spectral clustering based on k-nearest neighbour graph. Computer
Information Systems and Industrial Management. Springer Berlin Heidelberg, 254–265, (2012).
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Spectra of Corona Graphs

Signless Laplacian spectra

In the following theorem, we derived the elements of SQ (G (i)) in terms of the signless Laplacian eigenvalues of a regular basic

graph, G (0) = G such that SQ (G) = (q1, q2, . . . , qn = 2r) (where, q1 ≤ q2 ≤ . . . ≤ qn = 2r).

Theorem

Let G be a simple connected graph. Then, SQ (G (m)) is given by

(a) λi =
qi + n

∑m−1
i=0 2i + r

∑m
i=1 2i +

∑m−1
i=0 2i ±

∑m
j=1 zj

2m
with multiplicity of 1, for i = 1, . . . , n(n + 1)m−1

where,

zj =
√

(qi + n
∑j−1

i=0 2i + r(
∑j−1

i=1 2i − 2j ) + (
∑j−2

i=0 2i − 2j−1)±
∑j−1

i=1 zi )
2 + 22j .n for j = 2, . . . ,m and

z1 =
√

((qi + n)− (2r + 1))2 + 4n.

(b) qj + 1 with the multiplicity of n(n + 1)m−1 for j = 1, . . . , n − 1

Hence, spectral radius of SQ (G (m)) is

q(SQ (G (m))) =
qi + n

∑m−1
i=0 2i + r

∑m
i=1 2i +

∑m−1
i=0 2i +

∑m
j=1 zj

2m

where zj is defined as above.
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Spectra of Corona Graphs

Signless Laplacian spectra for star graphs

Consider star graph Sk which is an irregular graph. In the theorem below, we determine explicit formula of signless Laplacian

elements of G (m) = S
(m)
k

.

Theorem

Let SQ (G) = {q1, q2, . . . , qn} with q1 ≤ q2 ≤ . . . ≤ qn . Then, SQ (G (1)) is given by

(a) λz = X z
1 +

qi +2k+2
3

∈ σ(G (1)) with multiplicity 1, and

(b) qj + 1 ∈ σ(G (1)) where for j = 2, . . . , n − 1 with multiplicity of each of them as k

where, λz are the eigenvalues for G (1) with z = 1, 2, 3 for the 3 angles i.e. θ
3
, 2π+θ

3
, 4π+θ

3
as shown in following

sub-expressions

X z = 2
3

cos yπ+θ
3

√
q2
i + qi (k − 2) + (k + 1)2,

θ = cos−1
(

2q3
i +(3k−6)q2

i −3(k2−k−2)qi +(70k−94−12
∑k−2

a=1
(a+2)(k−a−1)

2(q2
i

+qi (k−2)+(k+1)2)
3
2

)
− yπ

where y = 0, 2, 4. Here, λz ∈
[
−qi +

2qi
3

+
Y−(A+

√
4B−A2)

3
, qi +

Y+A+

√
4B−A2

3

]
where A = (k − 2), B = (k + 1)2, Y = (2k + 2).
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Spectra of Corona Graphs

Signless Laplacian spectra for star graphs

Corollary

Let SQ (G) for star graph Sk for each k ≥ 3 is {q1, q2, . . . , qn} with q1 ≤ q2 ≤ . . . ≤ qn . Then, SQ (G (m)) is given by

(a) λz,1 = X z
1 +

qi +2k+2
3

, . . . , λz,m =
∑m−1

j=0 ( 1
3

)jXm−j + ( 1
3

)mqi + (2k + 2)
∑m

j=1( 1
3

)j ∈ σ(G (m)) with multiplicity

1, and

(b) qi + 1 ∈ σ(G (1)) where for i = 2, . . . , n − 1 with multiplicity of each of them as k(k + 1)(m−1).

where, λz,j are the eigenvalues for G (1) (for jth corona product) with z = 1, 2, 3 for the 3 angles i.e.
θj
3
,

2π+θj
3

,
4π+θj

3
as

shown in following sub-expressions
X z
l =

√
(A)2 + A + (k + 1)2

X z
1 = 2

3
cos yπ+θ

3

√
q2
i + qi (k − 2) + (k + 1)2,

where A = (
∑m−2

j=0 ( 1
3

)jXm−j−1 + ( 1
3

)m−1qi + (2k + 2)
∑m−1

j=1 ( 1
3

)j )

θ = cos−1
(

2λ3
z,m−1+(3k−6)λ2

z,m−1−3(k2−k−2)λz,m−1+(70k−94−12
∑k−2

a=1
(a+2)(k−a−1)

2(λ2
z,m−1

+λz,m−1(k−2)+(k+1)2)
3
2

)
− yπ

where y = 0, 2, 4 and λz,m−1 is as defined in part(a) of corollary. Here,

λz,1 ∈
[
−qi +

2qi
3

+
Y−(A+

√
4B−A2)

3
, qi +

Y+A+

√
4B−A2

3

]
, . . . ,

λz,m ∈
[
−qi +

2qi
3m
−

m(A+

√
4B−A2)

3
+ Y (−2

∑m
i=1

m−i

3i+1 +
∑m

i=1 3−i ), qi + m(
Y+A+

√
4B−A2

3
)

]
where A = (k − 2), B = (k + 1)2, Y = (2k + 2).
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Conclusions

Conclusions

Proposed a model for generating complex networks based on corona product of the graphs.

Investigated spectra, Laplacian spectra and signless Laplacian spectra of corona graphs.

Derived the spectra and signless Laplacian spectra of corona graphs when the basic graph is a star graph.

Corona graphs can be used as models for investigating the duplication mechanism of an individual gene for the
formation of new proteins.
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