Bounds for the *b*-chromatic number of induced subgraphs and G - e

P. Francis and S. Francis Raj

Department of Mathematics Pondicherry University Puducherry.

February 9, 2015

Outline

- Preliminaries
- Bounds for the b-chromatic number of induced subgraphs
- Bounds for b(G e) in terms of b(G)
- Extremal graphs
- References

b-coloring

- The b-chromatic number was introduced by R.W. Irving and D.F. Manlove.
- b-chromatic number has received wide attention from the time of its introduction.
- ullet They have shown that the determination of b(G) is NP-hard for general graphs, but polynomial for trees. Here is a motivation as to why we study b-coloring.

Motivation

- 4 All graphs considered are simple, undirected and finite.
- ② A proper k-coloring is a map $f: V \to S$, where S is a set of distinct colors such that adjacent vertices receive distinct colors. Equivalently,

A proper k-coloring is partitioning of the vertex set into k independent sets

Motivation

- **Output** Chromatic number: The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed for a proper vertex coloring of G.
- For any chromatic coloring between any two classes there is an edge.
- The minimum with this property chromatic number
- **4** The maximum with this property achromatic number $\psi(G)$.

Motivation

- **Ohromatic number:** The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed for a proper vertex coloring of G.
- For any chromatic coloring every color class contains a color dominating vertex (c.d.v.).
- 3 The minimum with this property chromatic number

Preliminaries

b-coloring of a graph

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes.

The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G.

$$\chi(G) \leq b(G) \leq \psi(G) \leq \Delta(G) + 1$$

.

Preliminaries

m-degree of a graph

The vertices $x_1, x_2, ..., x_n$ of G are ordered such that $d(x_1) \ge d(x_2) \ge ... \ge d(x_n)$ then m-degree of a graph $m(G) = max\{1 \le i \le n : d(x_i) \ge i - 1\}$.

• $b(G) \le m(G) \le \Delta(G) + 1$

Lemma (J. Kratochvil, Z. Tuza, M. Voigt)

Let G be a non-trivial connected graph. Then b(G)=2 if and only if G is bipartite and has a full vertex in each part of the bipartition.

- $\chi(G-v) = \chi(G)$ or $\chi(G)-1$. Also $\psi(G-v) = \psi(G)$ or $\psi(G)-1$.
- R. Balakrisnan, S. Francis Raj obtains the bounds for b(G-v) in terms of b(G).

- $\chi(G-v) = \chi(G)$ or $\chi(G)-1$. Also $\psi(G-v) = \psi(G)$ or $\psi(G)-1$.
- R. Balakrisnan, S. Francis Raj obtains the bounds for b(G-v) in terms of b(G).
- Similarly $\chi(G-e)=\chi(G)$ or $\chi(G)-1$. Also $\psi(G-e)=\psi(G)$ or $\psi(G)-1$.

- $\chi(G-v) = \chi(G)$ or $\chi(G)-1$. Also $\psi(G-v) = \psi(G)$ or $\psi(G)-1$.
- R. Balakrisnan, S. Francis Raj obtains the bounds for b(G-v) in terms of b(G).
- Similarly $\chi(G-e) = \chi(G)$ or $\chi(G)-1$. Also $\psi(G-e) = \psi(G)$ or $\psi(G)-1$.

Figure: b(G) = 2 and b(G - e) = k

- The bounds for b(G e).
- The bounds for b(G-S) where G-S is an induced subgraph of G.
- The extremal graphs which attains the upper bound for b(G e).

Theorem

For any connected graph G with $n \ge 5$ vertices and for any $S \subset V(G)$,

$$b(G-S) \le b(G) + \left\lceil \frac{n-|S|}{2} \right\rceil - 2$$
, for all $1 \le |S| \le n-3$.

Proof

$$b(G-S) = b(G) + \left\lceil \frac{n-|S|}{2} \right\rceil - 2 + k, (k \ge 1)$$
 (1)

• Let c' be a b-chromatic coloring of G - S. P' – singleton classes of c'Q' – remaining classes of c'.

Proof

$$b(G-S) = b(G) + \left\lceil \frac{n-|S|}{2} \right\rceil - 2 + k, (k \ge 1)$$
 (1)

- Let c' be a b-chromatic coloring of G S.
 P' singleton classes of c'
 Q' remaining classes of c'.
- $(1) \Rightarrow b(G-S)-b(G)=\left\lceil \frac{n-|S|}{2}\right\rceil -2+k\geq 1.$

Proof

$$b(G-S) = b(G) + \left\lceil \frac{n-|S|}{2} \right\rceil - 2 + k, (k \ge 1)$$
 (1)

- Let c' be a b-chromatic coloring of G S.
 P' singleton classes of c'
 Q' remaining classes of c'.
- $(1) \Rightarrow b(G-S)-b(G)=\left\lceil \frac{n-|S|}{2}\right\rceil -2+k\geq 1.$
- Vertices of P' form a clique, $|P'| \leq b(G) 1$.

Proof

$$b(G-S) = b(G) + \left\lceil \frac{n-|S|}{2} \right\rceil - 2 + k, (k \ge 1)$$
 (1)

- Let c' be a b-chromatic coloring of G S.
 P' singleton classes of c'
 Q' remaining classes of c'.
- $(1) \Rightarrow b(G-S)-b(G) = \left\lceil \frac{n-|S|}{2} \right\rceil 2 + k \ge 1.$
- Vertices of P' form a clique, $|P'| \leq b(G) 1$.
- Also b(G-S)=|P'|+|Q'|, we get $|Q'|\geq \left\lceil \frac{n-|S|}{2}\right\rceil-1+k$.

Case (1) Both n and |S| are of same parity

•
$$|Q'| \ge \frac{n-|S|}{2} - 1 + k \ge \frac{n-|S|}{2}$$
, and $|V(Q')| \ge n - |S|$.

Case (1) Both n and |S| are of same parity

- $|Q'| \ge \frac{n-|S|}{2} 1 + k \ge \frac{n-|S|}{2}$, and $|V(Q')| \ge n |S|$.
- Also $|V(Q')| \le n |S|$. Hence |V(Q')| = n |S|, |P'| = 0, $|Q'| = \frac{n |S|}{2}$ and $b(G S) = \frac{n |S|}{2}$.

Case (1) Both n and |S| are of same parity

- $|Q'| \ge \frac{n-|S|}{2} 1 + k \ge \frac{n-|S|}{2}$, and $|V(Q')| \ge n |S|$.
- Also $|V(Q')| \le n |S|$. Hence |V(Q')| = n |S|, |P'| = 0, $|Q'| = \frac{n |S|}{2}$ and $b(G S) = \frac{n |S|}{2}$.
- $(1) \Rightarrow b(G-S) \ge 2 + \frac{n-|S|}{2} 2 + 1 = \frac{n-|S|}{2} + 1.$

Case (1) Both n and |S| are of same parity

- $|Q'| \ge \frac{n-|S|}{2} 1 + k \ge \frac{n-|S|}{2}$, and $|V(Q')| \ge n |S|$.
- Also $|V(Q')| \le n |S|$. Hence |V(Q')| = n |S|, |P'| = 0, $|Q'| = \frac{n |S|}{2}$ and $b(G S) = \frac{n |S|}{2}$.
- $(1) \Rightarrow b(G-S) \ge 2 + \frac{n-|S|}{2} 2 + 1 = \frac{n-|S|}{2} + 1$.

Case (2) Both n and |S| are of different parity

- $|Q'| \ge \frac{n-|S|+1}{2} 1 + k \ge \frac{n-|S|+1}{2}$.
- $|V(Q')| \ge n |S| + 1$.

Lower bound for b(G - S)

Theorem

For any connected graph G with $n \ge 5$ vertices and for any $S \subset V(G)$,

$$b(G-S) \ge b(G) - \left| \frac{n+|S|}{2} \right| + 2$$
, for all $1 \le |S| \le n-4$.

Corollary

R. Balakrisnan, S. Francis Raj (Bounds for the b-chromatic number of G-v)

For any connected graph G with $n \ge 5$ vertices and for any $v \in V(G)$,

$$b(G) - \left(\left\lceil \frac{n}{2} \right\rceil - 2 \right) \le b(G - v) \le b(G) + \left\lfloor \frac{n}{2} \right\rfloor - 2.$$

• By substituting |S| = 1 in previous Theorem.

Figure: Graphs which attain the bounds.

Bounds for b(G - e) in terms of b(G)

Theorem

For any connected graph G with n vertices and for any $e \in E(G)$,

$$b(G)-1 \leq b(G-e) \leq b(G)+\left\lceil \frac{n}{2}\right\rceil -2.$$

Bounds for b(G - e) in terms of b(G)

Theorem

For any connected graph G with n vertices and for any $e \in E(G)$,

$$b(G)-1 \leq b(G-e) \leq b(G)+\left\lceil \frac{n}{2}\right\rceil -2.$$

Proof.

Figure: Lower bound for b(G - e)

•
$$b(G-e) = b(G) + \left\lceil \frac{n}{2} \right\rceil - 2$$

Figure: Extremal graphs when n = 2, 3, 4.

$$b(G) = b(G - e) - \left\lceil \frac{n}{2} \right\rceil + 2 \tag{2}$$

• Let c' be a b-chromatic coloring of G - e, where e = uv. S' – singleton classes of c' T' – remaining classes of c'.

$$b(G) = b(G - e) - \left\lceil \frac{n}{2} \right\rceil + 2 \tag{2}$$

- Let c' be a b-chromatic coloring of G e, where e = uv. S' singleton classes of c' T' remaining classes of c'.
- As $n \ge 5$, $b(G e) b(G) \ge 1$.
- u and v belongs to the same class of c'.

$$b(G) = b(G - e) - \left\lceil \frac{n}{2} \right\rceil + 2 \tag{2}$$

- Let c' be a b-chromatic coloring of G e, where e = uv. S' singleton classes of c' T' remaining classes of c'.
- As $n \ge 5$, $b(G e) b(G) \ge 1$.
- u and v belongs to the same class of c'.
- Vertices of S' form a clique, $|S'| \le b(G) 1$ and therefore $|T'| \ge \lceil \frac{n}{2} \rceil 1$.

$$b(G) = b(G - e) - \left\lceil \frac{n}{2} \right\rceil + 2 \tag{2}$$

- Let c' be a b-chromatic coloring of G e, where e = uv. S' singleton classes of c' T' remaining classes of c'.
- As $n \ge 5$, $b(G e) b(G) \ge 1$.
- u and v belongs to the same class of c'.
- Vertices of S' form a clique, $|S'| \le b(G) 1$ and therefore $|T'| \ge \lceil \frac{n}{2} \rceil 1$.

Case (i) n is even. $|T'| \ge \frac{n}{2} - 1$, and thus $|V(T')| \ge n - 2$.

Extremal graphs (n is even)

Here b(G) = 3.

Figure: *n* is even and |V(T')| = n - 2.

Extremal graphs (*n* is even)

Figure: n is even, |V(T')| = n-1 and x is adjacent to w.

Extremal graphs (n is even)

Figure: n is even, |V(T')| = n-1, x is non-adjacent to w and v_1 .

Extremal graphs (*n* is even)

Figure: |S'| = 0, u_1 has one neighbor in each class and $s \ge 2$.

Extremal graphs (n is even)

 u_1 has one neighbor in each class and s=1

Figure: n is even, b(G) = 2 and |V(T')| = n.

Extremal graphs (n is even)

Figure: n is even, b(G) = 2 and |V(T')| = n.

Extremal graphs (*n* is odd)

Figure: n is odd and |V(T')| = n - 1.

References

- R. W. Irving and D. F. Manlove, The b-Chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141.
- R. Balakrisnan, S. Francis Raj, Bounds for the b-chromatic number of G v, Discrete Appl. Math. 161 (2013) 1173-1179.
- J. Kratochvil, Z. Tuza, M. Voigt, On the b-chromatic number of graphs, Lecture Notes in Comput. Sci. 2573 (2002) 310-320.
- D. Barth, J. Cohen, T. Faik, On the b-continuity property of graphs, Discrete Appl. Math. 155 (2007) 1761-1768.

References

- M. Kouider and M. Mahéo, Some bounds for the b-Chromatic number of a graph, Discrete Math. 256 (2002) 267-277.
- M. Kouider, M. Zaker, Bounds for the b-Chromatic number of some families of graphs, Discrete Math. 306 (2006) 617-623.
- S. Corteel, M. Valencia-Pabon and J.C. Vera, On approximating the b-chromatic number, Discrete Appl. Math. 146 (2005) 106-110.

Thank You