Obstruction Characterizations of Representable Graphs and Digraphs

Pavol Hell, SFU

2015 CALDAM

Interval graph

Vertices v can be represented by intervals I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Interval graph

Vertices v can be represented by intervals I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Example

Applications

Food webs, resource allocation, genetics, etc.

Benzer 1959, Cohen 1978, Klee 1969

Applications

Food webs, resource allocation, genetics, etc.

Benzer 1959, Cohen 1978, Klee 1969

Algorithms

O(m+n) recognition algorithms

Booth-Lueker 1976, Korte-Mohring 1989, Habib-McConnell-Paul-Viennot 1998, Corneil-Olariu-Stewart 1998

Greedy O(n) optimization algorithms

Gavril 1974, Rose-Tarjan-Lueker 1976

Characterizations

Ordering of the rows of the maxclique matrix

Fulkerson-Gross 1965

Via complements and comparability graphs

Gilmore-Hoffman 1964

Induced subgraph obstructions

Lekkerkerker-Boland 1962

Lekkerkerker-Boland 1962

H is an interval graph \iff H has no induced subgraph from

Lekkerkerker-Boland 1962

H is an interval graph \iff H has no induced subgraph from

Lekkerkerker-Boland 1962

H is an interval graph \iff H has no induced subgraph from

Lekkerkerker-Boland 1962

H is an interval graph \iff H has no induced subgraph from

Asteroidal triple (AT)

Any two joined by a path avoiding the neighbours of the third

Lekkerkerker-Boland 1962

H is an interval graph \iff H has no induced subgraph from

Asteroidal triple (AT)

Any two joined by a path avoiding the neighbours of the third

Lekkerkerker-Boland 1962

H is an interval graph \iff H has no induced subgraph from

Asteroidal triple (AT)

Any two joined by a path avoiding the neighbours of the third

Lekkerkerker-Boland 1962

H is an interval graph \iff H has no induced subgraph from

Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no AT or induced $C_k, k \geq 4$.

Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no AT or induced C_4, C_5 .

Lekkerkerker-Boland 1962

H is an interval graph \iff H has no AT or induced C_4 , C_5 .

Kratsch-McConnell-Mehlhorn-Spinrad 2006

O(m+n) certifying recognition algorithm

Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no AT or induced C_4 , C_5 .

Lekkerkerker-Boland 1962

H is an interval graph \iff H has no AT or induced C_4 , C_5 .

Can these obstructions be unified?

Is there a common explanation?

The umbrella property

H is an interval graph

$$\iff$$

V(H) can be linearly ordered by < so that for u < v < w

$$u \sim w \implies u \sim v$$

The umbrella property

H is an interval graph

$$\iff$$

V(H) can be linearly ordered by < so that for u < v < w

$$u \sim w \implies u \sim v$$

The umbrella property

H is an interval graph

$$\iff$$

V(H) can be linearly ordered by < so that for u < v < w

$$u \sim w \implies u \sim v$$

The umbrella property

H is an interval graph

$$\iff$$

V(H) can be linearly ordered by < so that for u < v < w

$$u \sim w \implies u \sim v$$

Min-ordering

H is an interval graph

$$\leftarrow$$

V(H) can be linearly ordered by < so that

$$u \sim v$$
 and $u' \sim v' \implies \min(u, u') \sim \min(v, v')$

Min-ordering

H is an interval graph

$$\iff$$

V(H) can be linearly ordered by < so that

$$u \sim v$$
 and $u' \sim v' \implies \min(u, u') \sim \min(v, v')$

i.e.,
$$u \sim v, u' \sim v'$$
 and $u < u', v' < v \implies u \sim v'$

Min-ordering

H is an interval graph

$$\iff$$

V(H) can be linearly ordered by < so that

$$u \sim v$$
 and $u' \sim v' \implies \min(u, u') \sim \min(v, v')$

i.e.,
$$u \sim v, u' \sim v'$$
 and $u < u', v' < v \implies u \sim v'$

Min-ordering

H is an interval graph

V(H) can be linearly ordered by < so that

$$u \sim v$$
 and $u' \sim v' \implies \min(u, u') \sim \min(v, v')$

i.e.,
$$u \sim v, u' \sim v'$$
 and $u < u', v' < v \implies u \sim v'$

Min-ordering

H is an interval graph

$$\iff$$

V(H) can be linearly ordered by < so that

$$u \sim v, u' \sim v'$$
 and $u < u', v' < v \implies u \sim v'$

Another Obstruction

Another Obstruction

Another Obstruction

Dashed line = non-edge

Invertible pair: a new obstruction

Dashed line = non-edge

The universal obstruction

H is an interval graph \iff it has no invertible pair

Invertible pair: a new obstruction

Dashed line = non-edge

The universal obstruction

H is an interval graph \iff it has no invertible pair

Feder+H+Huang+Rafiey 2012

Observation

The Unified Obstruction

A pulsed obstruction characterization

H is an interval graph \iff it has no invertible pair

Feder+H+Huang+Rafiev 2012

- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty

- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty

- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty

- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty

- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty

An interval digraph

Vertices can be represented by pairs of intervals I_{ν} , J_{ν} , so that

$$v \to w \Longleftrightarrow I_v \cap J_w \neq \emptyset$$

An interval digraph

Vertices can be represented by pairs of intervals I_{ν} , J_{ν} , so that

$$v \to w \Longleftrightarrow I_v \cap J_w \neq \emptyset$$

Example

$$\frac{I_a}{J_a} = \frac{I_c}{I_b} = \frac{I_c}{J_c}$$

An interval digraph

Vertices can be represented by pairs of intervals I_{ν} , J_{ν} , so that

$$v \to w \Longleftrightarrow I_v \cap J_w \neq \emptyset$$

Example

$$\frac{I_a}{J_a} = \frac{I_a}{I_b} = \frac{I_c}{J_c}$$

Sen-Das-Roy-West 1989

An interval digraph

Vertices can be represented by pairs of intervals I_{ν} , J_{ν} , so that

$$v \to w \Longleftrightarrow I_v \cap J_w \neq \emptyset$$

Example

$$\frac{I_a}{J_a} = \frac{I_c}{I_b} = \frac{I_c}{J_c}$$

Sen-Das-Roy-West 1989

Characterizations?

Characterizations?

- Ordering of the rows and columns of the adjacency matrix
- Via complements and Ferrers digraphs

Sen-Das-Roy-West 1989

Characterizations?

- Ordering of the rows and columns of the adjacency matrix
- Via complements and Ferrers digraphs

Sen-Das-Roy-West 1989

Algorithms?

Characterizations?

- Ordering of the rows and columns of the adjacency matrix
- Via complements and Ferrers digraphs

Sen-Das-Roy-West 1989

Algorithms?

Recognition in $O(n^2m^7)$

Mueller 1997

Characterizations?

- Ordering of the rows and columns of the adjacency matrix
- Via complements and Ferrers digraphs

Sen-Das-Roy-West 1989

Algorithms?

Recognition in $O(n^2m^7)$

Mueller 1997

OPEN

An obstruction characterization

A low-degree polynomial recognition algorithm ?

A polynomial certifying algorithm

An adjusted interval digraph

Vertices can be represented by pairs of adjusted intervals I_{ν}, J_{ν}

$$v \to w \Longleftrightarrow I_v \cap J_w \neq \emptyset$$

Min-ordering

H is an adjusted interval digraph if and only if V(H) can be linearly ordered by < so that for u < v and u' > v'

$$u \rightarrow u'$$
 and $v \rightarrow v' \implies u \rightarrow v'$

Adjusted Interval Digraphs

H is an adjusted interval digraph \iff it has no invertible pair

 $\mathsf{Feder} {+} \mathsf{H} {+} \mathsf{Huang} {+} \mathsf{Rafiey} \ 2012$

Adjusted Interval Digraphs

H is an adjusted interval digraph \iff it has no invertible pair

Feder+H+Huang+Rafiey 2012

Adjusted Interval Digraphs

Recognition

A certifying $O(m^2)$ algorithm, via reachability in an auxiliary digraph

Feder+H+Huang+Rafiey 2012

Adjusted Interval Digraphs

Recognition

A certifying $O(m^2)$ algorithm, via reachability in an auxiliary digraph

Feder+H+Huang+Rafiey 2012

• Is there an O(m+n) recognition algorithm?

Adjusted Interval Digraphs

Recognition

A certifying $O(m^2)$ algorithm, via reachability in an auxiliary digraph

Feder+H+Huang+Rafiey 2012

- Is there an O(m+n) recognition algorithm?
- Are there interesting problems solvable in polynomial time on this digraph family?

Irreflexive Digraphs

Irreflexive Digraphs

Irreflexive Digraphs

Special case

Vertices can be represented by pairs of intervals I_{ν} , J_{ν} where each ν has either $I_{\nu}=\emptyset$ or $J_{\nu}=\emptyset$, and

$$v \to w \Longleftrightarrow I_v \cap J_w \neq \emptyset$$

Bigraphs (with red and blue vertices)

Each edge joins a red vertex and a blue vertex

Bigraphs (with red and blue vertices)

Each edge joins a red vertex and a blue vertex

Think of the edges as directed $(r \rightarrow b)$ but do not depict the arrows

Bigraphs (with red and blue vertices)

Each edge joins a red vertex and a blue vertex

Think of the edges as directed $(r \rightarrow b)$ but do not depict the arrows

Interval bigraph

Representable by real intervals I_r , J_b (for r red and b blue)

$$r \sim b \iff I_r \cap J_b \neq \emptyset$$

Matrix characterization

Sen-Das-Roy-West 1989

• $O(n^2m^7)$ recognition

Mueller 1997

Matrix characterization

Sen-Das-Rov-West 1989

• $O(n^2m^7)$ recognition

Mueller 1997

OPEN

Obstruction characterization Low-degree polynomial recognition algorithm ? A polynomial certifying recognition algorithm

Matrix characterization

Sen-Das-Rov-West 1989

• $O(n^2m^7)$ recognition

Mueller 1997

OPEN

Obstruction characterization Low-degree polynomial recognition algorithm ? A polynomial certifying recognition algorithm

Kumar Das?, Rafiey?

Matrix characterization

Sen-Das-Rov-West 1989

• $O(n^2m^7)$ recognition

Mueller 1997

OPEN

Obstruction characterization

Low-degree polynomial recognition algorithm?

A polynomial certifying recognition algorithm

Kumar Das?, Rafiey?

What is the right bigraph analogue?

Bigraphs

Min-ordering

Red vertices and blue vertices can be linearly ordered by < so that for $r_1 < r_2$ and $b_1 > b_2$

$$r_1 \sim b_1$$
 and $r_2 \sim b_2 \implies r_1 \sim b_2$

A 2DR graph

Intersection graph of a family of UP and RIGHT rays

A 2DR graph

Intersection graph of a family of UP and RIGHT rays


```
A bigraph H is a 2DR graph \iff
```

A bigraph H is a 2DR graph \iff

• H admits a min-ordering

A bigraph H is a 2DR graph \iff

- H admits a min-ordering
- *H* has no invertible pair

A bigraph H is a 2DR graph \iff

- H admits a min-ordering
- H has no invertible pair
- \bullet \overline{H} is a circular arc graph
- H has no induced $C_{>4}$ and no edge-asteroid

A bigraph H is a 2DR graph \iff

- H admits a min-ordering
- H has no invertible pair
- \bullet \overline{H} is a circular arc graph
- H has no induced $C_{>4}$ and no edge-asteroid
- the associated poset of H has dimension two
- etc

H and Huang 2004; H and Rafiey 2011; Shrestha, Tayu, and Ueno 2010; Spinrad 1988

A bigraph H is a 2DR graph \iff

- H admits a min-ordering
- H has no invertible pair
- \bullet \overline{H} is a circular arc graph
- H has no induced $C_{>4}$ and no edge-asteroid
- the associated poset of H has dimension two
- etc

H and Huang 2004; H and Rafiey 2011; Shrestha, Tayu, and Ueno 2010; Spinrad 1988

Problems solvable in polynomial time on this class

- Weighted dominating set
- Induced matching
- Strong edge-colouring

Ershadi 2012, Takaoka, Tayu, Ueno 2013

Problems solvable in polynomial time on this class

- Weighted dominating set
- Induced matching
- Strong edge-colouring

Ershadi 2012, Takaoka, Tayu, Ueno 2013

 $O(n^2)$ recognition algorithm (via circular arc graphs McConnell 2003) $O(m^2)$ certifying algorithm (via an auxiliary digraph) H and Rafiey 2011

Problems solvable in polynomial time on this class

- Weighted dominating set
- Induced matching
- Strong edge-colouring

Ershadi 2012, Takaoka, Tayu, Ueno 2013

 $O(n^2)$ recognition algorithm (via circular arc graphs McConnell 2003) $O(m^2)$ certifying algorithm (via an auxiliary digraph) H and Rafiey 2011

OPEN

Is there an O(m+n) recognition algorithm?

Interval Bigraphs

Interval Bigraphs

Bigraph H is an interval bigraph \iff

 \overline{H} has a circular arc model in which no two arcs cover the circle

H + Huang 2004

Interval Bigraphs

Bigraph H is an interval bigraph \iff

 \overline{H} has a circular arc model in which no two arcs cover the circle

H + Huang 2004

Corollary

Each interval bigraph is a 2DR graph

An H-colouring of G

 $f: V(G) \rightarrow V(H)$ such that $u \rightarrow v$ in $G \implies f(u) \rightarrow f(v)$ in H

An H-colouring of G

 $f:V(G) \rightarrow V(H)$ such that $u \rightarrow v$ in $G \implies f(u) \rightarrow f(v)$ in H

Also known as a homomorphism of G to H

An H-colouring of G

$$f:V(G) \rightarrow V(H)$$
 such that $u \rightarrow v$ in $G \implies f(u) \rightarrow f(v)$ in H

Also known as a homomorphism of G to H

Examples

An H-colouring of G

$$f:V(G) \rightarrow V(H)$$
 such that $u \rightarrow v$ in $G \implies f(u) \rightarrow f(v)$ in H

Also known as a homomorphism of G to H

Examples

• A K_n -colouring = an n-colouring

An *H*-colouring of *G*

$$f:V(G) \rightarrow V(H)$$
 such that $u \rightarrow v$ in $G \implies f(u) \rightarrow f(v)$ in H

Also known as a homomorphism of G to H

Examples

- A K_n -colouring = an n-colouring
- For a min-ordering of H, the mapping min is an H-colouring of H^2

$$u \rightarrow v$$
 and $u' \rightarrow v' \implies \min(u, u') \rightarrow \min(v, v')$

An H-colouring of G

$$f:V(G) \rightarrow V(H)$$
 such that $u \rightarrow v$ in $G \implies f(u) \rightarrow f(v)$ in H

Also known as a homomorphism of G to H

Examples

- A K_n -colouring = an n-colouring
- For a min-ordering of H, the mapping min is an H-colouring of H^2

$$u \rightarrow v$$
 and $u' \rightarrow v' \implies \min(u, u') \rightarrow \min(v, v')$

A conservative polymorphism

An *H*-colouring f of H^k with $f(x_1, x_2, ..., x_k) \in \{x_1, x_2, ..., x_k\}$

An *H*-colouring of *G*

$$f:V(G) \rightarrow V(H)$$
 such that $u \rightarrow v$ in $G \implies f(u) \rightarrow f(v)$ in H

Also known as a homomorphism of G to H

Examples

- A K_n -colouring = an n-colouring
- For a min-ordering of H, the mapping min is an H-colouring of H^2

$$u \rightarrow v$$
 and $u' \rightarrow v' \implies \min(u, u') \rightarrow \min(v, v')$

A conservative polymorphism

An *H*-colouring f of H^k with $f(x_1, x_2, ..., x_k) \in \{x_1, x_2, ..., x_k\}$

Nice polymorphisms (commutative, associative, majority) are useful objects

The List *H*-colouring problem

Given G with lists, can it be H-coloured by a mapping f that respects the lists, i.e., with each f(v) is in the list of v?

Fixed graph H

Processors and connections

Input graph G with lists

Tasks and communications

Another Example Application

Lists

Lists of allowed decisions

Dichotomies for the List *H*-colouring problems

- If H is a reflexive graph then List H-colouring is polynomial time solvable if H is an interval graph, and is NP-complete otherwise
- If H is a reflexive digraph then List H-colouring is polynomial time solvable if H is an adjusted interval digraph, and is conjectured to be NP-complete otherwise
- If H is an irreflexive graph then List H-colouring is polynomial time solvable if H is a 2DR graph, and is NP-complete otherwise

Feder, H 1995; Feder, H, Huang 1999, Feder, H, Huang, Rafiey 2012

Dichotomies for the List *H*-colouring problems

- If H is a reflexive graph then List H-colouring is polynomial time solvable if H is an interval graph, and is NP-complete otherwise
- If H is a reflexive digraph then List H-colouring is polynomial time solvable if H is an adjusted interval digraph, and is conjectured to be NP-complete otherwise
- If H is an irreflexive graph then List H-colouring is polynomial time solvable if H is a 2DR graph, and is NP-complete otherwise

Feder, H 1995; Feder, H, Huang 1999, Feder, H, Huang, Rafiey 2012

If H has a nice polymorphism then List H-colouring is polynomial time solvable

Circular arc graph

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Circular arc graph

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger-Debrunner 1960, Klee 1969

When is H is a circular arc graph?

Circular arc graph

Vertices ν can be represented by circular arcs I_{ν} , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger-Debrunner 1960, Klee 1969

When is H is a circular arc graph?

Tucker, Eschen, Spinrad, McConnell, Kaplan, Nussbaum, Hsu, Lin, Szwarcfiter, Bonomo, Duran, Gripo, Safe, ...

Circular arc graph

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger-Debrunner 1960, Klee 1969

When is H is a circular arc graph?

Tucker, Eschen, Spinrad, McConnell, Kaplan, Nussbaum, Hsu, Lin, Szwarcfiter, Bonomo, Duran, Gripo, Safe, ...

McConnell, 2003, Kaplan-Nussbaum 2011

O(m+n) recognition algorithm

Circular arc graph

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger-Debrunner 1960, Klee 1969

When is H is a circular arc graph?

Tucker, Eschen, Spinrad, McConnell, Kaplan, Nussbaum, Hsu, Lin, Szwarcfiter, Bonomo, Duran, Gripo, Safe, ...

McConnell, 2003, Kaplan-Nussbaum 2011

O(m+n) recognition algorithm

Certifying algorithm?

New results

A forbidden structure characterization

New results

- A forbidden structure characterization
- A polynomial certifying recognition algorithm

New results

- A forbidden structure characterization
- A polynomial certifying recognition algorithm

Francis-H-Stacho 2015

Blocking quadruple: an asteroid-like obstruction

Four vertices, between any two either a path avoiding the neighbours of both other vertices, or a path between the other two vertices avoiding the neighbours of our vertices.

Blocking quadruple: an asteroid-like obstruction

Four vertices, between any two either a path avoiding the neighbours of both other vertices, or a path between the other two vertices avoiding the neighbours of the original vertices.

Blocking quadruple: an asteroid-like obstruction

Four vertices, between any two either a path avoiding the neighbours of both other vertices, or a path between the other two vertices avoiding the neighbours of the original vertices.

Blocking quadruple: an asteroid-like obstruction

Four vertices, between any two either a path avoiding the neighbours of both other vertices, or a path between the other two vertices avoiding the neighbours of the original vertices.

Blocking quadruples (BQ) sometimes suffice

- A chordal K_5 -free graph is a circular arc graph \iff no BQ
- ullet A chordal claw-free graph is a circular arc graph \iff no BQ
- etc

Francis-H-Stacho 2014, Bonomo-Duran-Grippo-Safe 2009

Blocking quadruples (BQ) sometimes suffice

- A chordal K_5 -free graph is a circular arc graph \iff no BQ
- A chordal claw-free graph is a circular arc graph ← no BQ
- etc

Francis-H-Stacho 2014, Bonomo-Duran-Grippo-Safe 2009

But not always

Towards a Pulsed Obstruction Characterization

Our goal

Can we find something like invertible pair obstructions here?

The First Twist – Standard

H has no twins and universal vertices

The First Twist – Standard

Each edge of H has a "type"

Type of edge uv

- Type *i* if $N[u] \subseteq N[v]$ ("inclusion")
- Type o if each u, v has a private neighbour ("overlap")

The First Twist – Standard

The First Twist – Standard

Hsu 1995

If H has a circular arc representation, then it has one corresponding to the labels

Extend *H* to include "complements"

Circularly paired vertices u, v

- *u* and *v* are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and $x \not\sim v \implies xu$ is an i-edge

Extend *H* to include "complements"

Circularly paired vertices u, v

- *u* and *v* are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and $x \not\sim v \implies xu$ is an i-edge

Extend *H* to include "complements"

Circularly paired vertices u, v

- *u* and *v* are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and $x \not\sim v \implies xu$ is an i-edge

Circular completion of H

If u is not circularly paired in H, we add a suitable new vertex \overline{u} $(x \sim \overline{u} \iff xu$ is not an i-edge)

Extend *H* to include "complements"

Circularly paired vertices u, v

- u and v are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and $x \not\sim v \implies xu$ is an i-edge

Circular completion of H

If u is not circularly paired in H, we add a suitable new vertex \overline{u} $(x \sim \overline{u} \iff xu$ is not an i-edge)

Facts

Each H has a unique circular completion H^+ H is a circular arc graph $\iff H^+$ is a circular arc graph

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- *H* is circularly complete

Anchored invertible pair

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete

Dashed line = non-edge or o-edge

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete

Anchored invertible pair u u u u u u u

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete

Anchored invertible pair u v u u u

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- *H* is circularly complete

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- *H* is circularly complete

Anchored invertible pair

Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete

Theorem

H is a circular arc graph \iff it has no anchored invertible pair

Francis-H-Stacho 2015

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

H is a circular arc graph \implies it has no anchored invertible pair

Representing an anchored invertible pair left(w) left(v') right(v right(u) left(u) right(v left(v)

Theorem

Algorithm

Delete universal vertices

Algorithm

- Delete universal vertices
- Delete one of each pair of twins

Algorithm

- Delete universal vertices
- Delete one of each pair of twins
- Run a standard recognition algorithm
 If a represenation is found, it is the certificate

Algorithm

- Delete universal vertices
- Delete one of each pair of twins
- Run a standard recognition algorithm
 If a representation is found, it is the certificate
 If no representation is found
 - Compute the edge-labels
 - Compute the circular completion
 - Find an anchored invertible pair (via an auxiliary graph)

Algorithm

- Delete universal vertices
- Delete one of each pair of twins
- Run a standard recognition algorithm
 If a representation is found, it is the certificate
 If no representation is found
 - Compute the edge-labels
 - Compute the circular completion
 - Find an anchored invertible pair (via an auxiliary graph)

A certifying recognition algorithm

All this can be done in time $O(n^3)$

