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Cut function
x:2V 5N

Carving-width

Example 1: x(S) = 6(S) (# of edges crossing S, V\S)

= x(@)=x(0)=5

Example 2: x(S) = size of max. matching in G[S, V\S]

mm-width %x(. ) ) x(' ) =3




Branch decompositions (verve)

Cut function

2 e aV NIg

- x-width (dec. D) =max__ . (x(S))

- x-width (graph G) = min (xx-width(D))

dec. D on G

mm-wi




Split-matching-width (smw)

sm-width: x-width where x(S) = (S)

1) (S)=1 If (S, V\S) is a split,
2) (S) = mm(S) Otherwise



Split-matching-width (smw)

sm-width: x-width where x(S) = (S)

1) (S)=1 If (S, V\S) is a split,
2) (S) = mm(S) Otherwise

G 2




Split-matching-width (smw)

sm-width: x-width where x(S) = (S)

1) (S)=1 If (S, V\S) is a split,
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S, @ S,
O ® O
(S,) =1 (S,) =mm(S,) =3
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Thm (Oum, Seymour '06):
If cut-func. is symmetric and submodular,
then we can 3-approximate optimal dec.

in 2°®_time.

mm Iis symmetric and submodular

sm IS not submodular



Previous approximation

Previous approximation for , using approx. of
mm-w and split decomposition tree

( resulted in decomp. of sm-width O(smw(G)?) )






























\ O/’/O \ Constructed in

polynomial time
Cunningham’82
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Lifted x-width

How to find good decompositions of prime

graphs?
Lifted x-width

This example:
lifted carving width = 3
carving width = 2
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Lemma: For primal graphs lifted-smw can be 6-
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Theorem: smw(G) can be 18-approximated in
20smw(®)_tjme




Conclusion

- Using lifted-smw we can 18-approximate smw
- Combined with improved DP algo gives 20

(©)_time algorithm
- Combined with previous DP algorithms of
S.,Telle’14

- in 20Emw(G)_time
- in smw(G)OE™ (G _time
- in 20Emw(G))_time

All optimal under Exponential Time Hypothesis.



Thank you



