Hamiltonian Cycle in EPT
time for a non-sparse
parameter

By Sigve Hortemo Sather

University of Bergen

for CALDAM 2015

Hamilonian Cycle (HC)

Question:
Does there exist a cycle of length n?

Hamilonian Cycle (HC)

Question:
Does there exist a cycle of length n?

[Lower bound on HC

e Unlikely to be solvable in poly-time (INP-
hard)

e No “natural” parameter (unlike e.g., Vertex Cover)

e Solvable in n®W20tW()_time (optimal by
ETH)

[Lower bound on HC

e Unlikely to be solvable in poly-time (INP-
hard)

e No “natural” parameter (unlike e.g., Vertex Cover)

e Solvable in n®W20tW()_time (optimal by
ETH)

o Implies unlikely for n®®@206mW(G)_time

‘ little-o

Goal (EPT algorithm)

Show nPWaOEmw(®))_time algo for HC

Goal (EPT algorithm)

Show n®WaOEmw(®))_time algo for HC

A

| will hide the n part in
runtimes from here on out

O(1)

Goal (EPT algorithm)

Show 206mMW()_time algo for HC

Goal (EPT algorithm)

Show 206mMW()_time algo for HC

1) Find a decomposition D of sm-width k = O(smw(G))
(in 2°%)-time)

2) Solve HC in 2°")-time using D

Goal (EPT algorithm)

Show 206mMW()_time algo for HC

1) Find a decomposition D of sm-width k = O(smw(G))

(in 2°%)-time)

2) Solve HC in 2°")-time using D

Branch decompositions (verve)

Branch decompositions (verve)

For dynamic programming.
D = (T, 0)

Branch decompositions (verve)

For dynamic programming.
D = (T, 0)

Branch decompositions (verve)

For dynamic programming.
D = (T, 0)

Branch decompositions (verve)

For dynamic programming.
D = (T, 0)

Branch decompositions (verve)

For dynamic programming.
D = (T, 0)

Branch decompositions (verve)

Cut function
x:2V 5N

Branch decompositions (verve)

Cut function
x:2V 5N

Branch decompositions (verve)

Cut function
x:2V 5N

Example 1: x(S) = 6(S) (# of edges crossing S, V\S)

= x(@)=x(0)=5

Example 2: x(S) = size of max. matching in G[S, V\S]

=x(@)=x(Q)=3

Branch decompositions (verve)

Cut function
x:2V 5N

Carving-width

Example 1: x(S) = 6(S) (# of edges crossing S, V\S)

= x(@)=x(0)=5

Example 2: x(S) = size of max. matching in G[S, V\S]

mm-width %x(.)) x(') =3

Branch decompositions (verve)

Cut function

2 e aV NIg

- x-width (dec. D) =max__ . (x(S))

- x-width (graph G) = min (xx-width(D))

dec. D on G

mm-wi

Split-matching-width (smw)

sm-width: x-width where x(S) = (S)

1) (S)=1 If (S, V\S) is a split,
2) (S) = mm(S) Otherwise

Split-matching-width (smw)

sm-width: x-width where x(S) = (S)

1) (S)=1 If (S, V\S) is a split,
2) (S) = mm(S) Otherwise

G 2

Split-matching-width (smw)

sm-width: x-width where x(S) = (S)

1) (S)=1 If (S, V\S) is a split,
2) (S) = mm(S) Otherwise

S, @ S,
O ® O
(S,) =1 (S,) =mm(S,) =3

Branch decompositions (verve)

Thm (Oum, Seymour ‘06):
If cut-func. is symmetric and submodular,
then we can 3-approximate optimal dec.

in 2°®_time.

Branch decompositions (verve)

Thm (Oum, Seymour '06):
If cut-func. is symmetric and submodular,
then we can 3-approximate optimal dec.

in 2°®_time.

mm Iis symmetric and submodular

sm IS not submodular

Previous approximation

Previous approximation for , using approx. of
mm-w and split decomposition tree

(resulted in decomp. of sm-width O(smw(G)?))

\ O/’/O \ Constructed in

polynomial time
Cunningham’82

TE{/'/O \ Glue together

smaller
decompositions

smaller

decompositions

“I“““‘l““‘l‘“‘

decompositions

Il‘l‘ll‘lllll‘“llll‘ll“ll‘lll

decompositions

Il‘l‘ll‘lllll‘“llll‘ll“lllll

decompositions

Lifted x-width

How to find good decompositions of prime
graphs?

Lifted x-width =223~ .

Lifted x-width

How to find good decompositions of prime

graphs?

Lifted x-width

Lifted x-width

How to find good decompositions of prime
graphs?

Lifted x-width

Lifted x-width

How to find good decompositions of prime
graphs?

Lifted x-width

Lifted x-width

How to find good decompositions of prime

graphs?
Lifted x-width

This example:
lifted carving width = 3
carving width = 2

Lemma: For any primal graph G’ in split
decomposition of G, lifted-smw(G’) < 3*smw(G)

Lemma: For any primal graph G’ in split
decomposition of G, lifted-smw(G’) < 3*smw(G)

Lemma: For primal graphs lifted-smw can be 6-
approximated in 200fted-smw)_time

Lemma: For any primal graph G’ in split
decomposition of G, lifted-smw(G’) < 3*smw(G)

Lemma: For primal graphs lifted-smw can be 6-
approximated in 200fted-smw)_time

Theorem: smw(G) can be 18-approximated in
20smw(®)_tjme

Conclusion

- Using lifted-smw we can 18-approximate smw
- Combined with improved DP algo gives 20

(©)_time algorithm
- Combined with previous DP algorithms of
S.,Telle’14

- in 20Emw(G)_time
- in smw(G)OE™ (G _time
- in 20Emw(G))_time

All optimal under Exponential Time Hypothesis.

Thank you

