Hamiltonian Cycle in EPT time for a non-sparse parameter By Sigve Hortemo Sæther University of Bergen for CALDAM 2015 ## Hamilonian Cycle (HC) Question: Does there exist a cycle of length n? ### Hamilonian Cycle (HC) Question: Does there exist a cycle of length n? #### Lower bound on HC Unlikely to be solvable in poly-time (NP-hard) - No "natural" parameter (unlike e.g., Vertex Cover) - Solvable in $n^{O(1)}2^{O(tw(G))}$ -time (optimal by ETH) #### Lower bound on HC Unlikely to be solvable in poly-time (NP-hard) - No "natural" parameter (unlike e.g., Vertex Cover) - Solvable in $n^{O(1)}2^{O(tw(G))}$ -time (optimal by ETH) - o Implies unlikely for $n^{O(1)}2^{o(\text{smw}(G))}$ -time little-o Show $n^{O(1)}2^{O(\text{smw}(G))}$ -time algo for HC Show $n^{O(1)}2^{O(\text{smw}(G))}$ -time algo for HC I will hide the $n^{{\rm O}(1)}$ part in runtimes from here on out Show 2^{O(smw(G))}-time algo for HC Show 2^{O(smw(G))}-time algo for HC 1) Find a decomposition **D** of sm-width k = O(smw(G)) (in $2^{O(k)}$ -time) 2) Solve HC in 2^{O(k)}-time using D Show 2^{O(smw(G))}-time algo for HC 1) Find a decomposition **D** of sm-width k = O(smw(G)) (in $2^{O(k)}$ -time) 2) Solve HC in 2^{O(k)}-time using D $$D = (T, \delta)$$ #### Cut function $$\mathbf{x}: \mathbf{2}^{\mathrm{V}} \to \mathbb{N}$$ #### Cut function $$\mathbf{x}: \mathbf{2}^{\mathrm{V}} \to \mathbb{N}$$ #### Cut function $$\mathbf{x}: \mathbf{2}^{\mathrm{V}} \to \mathbb{N}$$ Example 1: $x(S) = \delta(S)$ (# of edges crossing S, V\S) $$\Rightarrow x(\bigcirc) = x(\bigcirc) = 5$$ Example 2: x(S) = size of max. matching in $G[S, V \setminus S]$ $$\Rightarrow x(\bigcirc) = x(\bigcirc) = 3$$ #### Cut function $$oldsymbol{x}:\mathbf{2}^{\mathrm{V}} ightarrow \mathbb{N}$$ Carving-width Example 1: $x(S) = \delta(S)$ (# of edges crossing S, V\S) $$\Rightarrow x(\bigcirc) = x(\bigcirc) = 5$$ Example 2: x(S) = size of max. matching in $G[S, V \setminus S]$ $$\Rightarrow x(\bigcirc) = x(\bigcirc) = 3$$ #### Cut function V NY ``` - x-width (dec. D) = \max_{\text{cut S in } D}(x(S)) ``` - x-width (graph G) = min_{dec. D on G} (x-width(D)) mm-width #### Split-matching-width (smw) sm-width: \mathbf{x} -width where $\mathbf{x}(S) = \mathbf{sm}(S)$ - 1) sm(S) = 1 If $(S, V \setminus S)$ is a split, - 2) sm(S) = mm(S) Otherwise ## Split-matching-width (smw) sm-width: \mathbf{x} -width where $\mathbf{x}(S) = \mathbf{sm}(S)$ 1) $$sm(S) = 1$$ If $(S, V \setminus S)$ is a $split$, 2) $$sm(S) = mm(S)$$ Otherwise # Split-matching-width (smw) sm-width: \mathbf{x} -width where $\mathbf{x}(S) = \mathbf{sm}(S)$ 1) $$sm(S) = 1$$ If $(S, V \setminus S)$ is a *split*, 2) $$sm(S) = mm(S)$$ Otherwise $$sm(S_1) = 1$$ $$sm(S_2) = mm(S_2) = 3$$ ``` Thm (Oum, Seymour '06): ``` If cut-func. is symmetric and submodular, then we can 3-approximate optimal dec. in $2^{O(k)}$ -time. #### Thm (Oum, Seymour '06): If cut-func. is symmetric and submodular, then we can 3-approximate optimal dec. in $2^{O(k)}$ -time. mm is symmetric and submodular sm is not submodular #### Previous approximation Previous approximation for **smw**, using approx. of **mm-w** and **split decomposition tree** (resulted in decomp. of sm-width O(smw(G)²)) How to find good decompositions of prime graphs? Lifted x-width This example: lifted carving width = 3 carving width = 2 Lemma: For any primal graph G' in split decomposition of G, lifted- $smw(G') \le 3*smw(G)$ Lemma: For any primal graph G' in split decomposition of G, lifted- $smw(G') \le 3*smw(G)$ Lemma: For primal graphs lifted-*smw* can be 6-approximated in 2^{O(lifted-*smw*)}-time Lemma: For any primal graph G' in split decomposition of G, lifted- $smw(G') \le 3*smw(G)$ Lemma: For primal graphs lifted-*smw* can be 6-approximated in 2^{O(lifted-*smw*)}-time Theorem: smw(G) can be 18-approximated in $2^{O(smw(G))}$ -time ### Conclusion - Using lifted-smw we can 18-approximate smw - Combined with improved DP algo gives 2^{O(smw}-time Hamiltonian Cycle algorithm - Combined with previous DP algorithms of S.,Telle'14 - Edge Dominating Set in 2^{O(smw(G))}-time - Chromatic Number in **smw(G)**O(**smw(G)**)-time - Max-Cut in 2^{O(smw(G))}-time All optimal under Exponential Time Hypothesis. # Thank you