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ETH)
○ Implies unlikely for nO(1)2o(smw(G))-time
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Cut function  
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Branch decompositions (over V(G))

Example 1: x(S) = δ(S)   (# of edges crossing S, V\S)
                      
                      ⇒ x(     ) = x(     ) = 5

Example 2: x(S) = size of max. matching in G[S, V\S]
                 
                      ⇒ x(     ) = x(     ) = 3

Carving-width

mm-width

- x-width (dec. D) = maxcut S in D(x(S))

- x-width (graph G) = mindec. D on G(x-width(D))
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Split-matching-width (smw)

sm-width: x-width where x(S) = sm(S)

1) sm(S) = 1               If (S, V\S) is a split,
2) sm(S) = mm(S)    Otherwise

S1 S2

sm(S1) = 1 sm(S2) = mm(S2) = 3
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Branch decompositions

Thm (Oum, Seymour ’06):
   If cut-func. is symmetric and submodular,
   then we can 3-approximate optimal dec.
   in 2O(k)-time.

(over V(G))

mm is symmetric and submodular

sm is not submodular



Previous approximation

Previous approximation for smw, using approx. of 
mm-w and split decomposition tree

( resulted in decomp. of sm-width O(smw(G)2) )





















Constructed in 
polynomial time
Cunningham’82
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Lifted x-width

How to find good decompositions of prime 
graphs?

Lifted x-width

This example:
 lifted carving width = 3
 carving width = 2
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Theorem: smw(G) can be 18-approximated in
2O(smw(G))-time

Lemma: For primal graphs lifted-smw can be 6-
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Conclusion

- Using lifted-smw we can 18-approximate smw
- Combined with improved DP algo gives 2O(smw

(G))-time Hamiltonian Cycle algorithm
- Combined with previous DP algorithms of
     S.,Telle’14

- Edge Dominating Set in 2O(smw(G))-time
- Chromatic Number in smw(G)O(smw(G))-time
- Max-Cut in 2O(smw(G))-time

All optimal under Exponential Time Hypothesis.



Thank you


