
Hamiltonian Cycle in EPT
time for a non-sparse

parameter
By Sigve Hortemo Sæther

University of Bergen

for CALDAM 2015

Hamilonian Cycle (HC)

Question:
Does there exist a cycle of length n?

Hamilonian Cycle (HC)

Question:
Does there exist a cycle of length n?

Lower bound on HC

● Unlikely to be solvable in poly-time (NP-
hard)

● No “natural” parameter (unlike e.g., Vertex Cover)

● Solvable in nO(1)2O(tw(G))-time (optimal by
ETH)

Lower bound on HC

● Unlikely to be solvable in poly-time (NP-
hard)

● No “natural” parameter (unlike e.g., Vertex Cover)

● Solvable in nO(1)2O(tw(G))-time (optimal by
ETH)
○ Implies unlikely for nO(1)2o(smw(G))-time

little-o

Goal (EPT algorithm)

Show nO(1)2O(smw(G))-time algo for HC

Goal (EPT algorithm)

Show nO(1)2O(smw(G))-time algo for HC

I will hide the nO(1) part in
runtimes from here on out

Goal (EPT algorithm)

Show 2O(smw(G))-time algo for HC

Goal (EPT algorithm)

Show 2O(smw(G))-time algo for HC

1) Find a decomposition D of sm-width k = O(smw(G))
(in 2O(k)-time)

2) Solve HC in 2O(k)-time using D

Goal (EPT algorithm)

Show 2O(smw(G))-time algo for HC

1) Find a decomposition D of sm-width k = O(smw(G))
(in 2O(k)-time)

2) Solve HC in 2O(k)-time using D

Branch decompositions (over V(G))

Branch decompositions

For dynamic programming.
D = (T, δ)

(over V(G))

Branch decompositions

For dynamic programming.
D = (T, δ)

(over V(G))

Branch decompositions

For dynamic programming.
D = (T, δ)

(over V(G))

Branch decompositions

For dynamic programming.
D = (T, δ)

(over V(G))

Branch decompositions

For dynamic programming.
D = (T, δ)

(over V(G))

Cut function
 x : 2V → ℕ

Branch decompositions (over V(G))

Cut function
 x : 2V → ℕ

Branch decompositions (over V(G))

Cut function
 x : 2V → ℕ

Branch decompositions

Example 1: x(S) = δ(S) (# of edges crossing S, V\S)

 ⇒ x() = x() = 5

Example 2: x(S) = size of max. matching in G[S, V\S]

 ⇒ x() = x() = 3

(over V(G))

Cut function
 x : 2V → ℕ

Branch decompositions (over V(G))

Example 1: x(S) = δ(S) (# of edges crossing S, V\S)

 ⇒ x() = x() = 5

Example 2: x(S) = size of max. matching in G[S, V\S]

 ⇒ x() = x() = 3

Carving-width

mm-width

Cut function
 x : 2V → ℕ

Branch decompositions (over V(G))

Example 1: x(S) = δ(S) (# of edges crossing S, V\S)

 ⇒ x() = x() = 5

Example 2: x(S) = size of max. matching in G[S, V\S]

 ⇒ x() = x() = 3

Carving-width

mm-width

- x-width (dec. D) = maxcut S in D(x(S))

- x-width (graph G) = mindec. D on G(x-width(D))

Split-matching-width (smw)

sm-width: x-width where x(S) = sm(S)

1) sm(S) = 1 If (S, V\S) is a split,
2) sm(S) = mm(S) Otherwise

Split-matching-width (smw)

sm-width: x-width where x(S) = sm(S)

1) sm(S) = 1 If (S, V\S) is a split,
2) sm(S) = mm(S) Otherwise

Split-matching-width (smw)

sm-width: x-width where x(S) = sm(S)

1) sm(S) = 1 If (S, V\S) is a split,
2) sm(S) = mm(S) Otherwise

S1 S2

sm(S1) = 1 sm(S2) = mm(S2) = 3

Branch decompositions

Thm (Oum, Seymour ‘06):
 If cut-func. is symmetric and submodular,
 then we can 3-approximate optimal dec.
 in 2O(k)-time.

(over V(G))

Branch decompositions

Thm (Oum, Seymour ’06):
 If cut-func. is symmetric and submodular,
 then we can 3-approximate optimal dec.
 in 2O(k)-time.

(over V(G))

mm is symmetric and submodular

sm is not submodular

Previous approximation

Previous approximation for smw, using approx. of
mm-w and split decomposition tree

(resulted in decomp. of sm-width O(smw(G)2))

Constructed in
polynomial time
Cunningham’82

Glue together
smaller
decompositions

Glue together
smaller
decompositions

Glue together
smaller
decompositions

Glue together
smaller
decompositions

Glue together
smaller
decompositions

Lifted x-width

How to find good decompositions of prime
graphs?

Lifted x-width

Lifted x-width

How to find good decompositions of prime
graphs?

Lifted x-width

Lifted x-width

How to find good decompositions of prime
graphs?

Lifted x-width

Lifted x-width

How to find good decompositions of prime
graphs?

Lifted x-width

Lifted x-width

How to find good decompositions of prime
graphs?

Lifted x-width

This example:
 lifted carving width = 3
 carving width = 2

Lemma: For any primal graph G’ in split
decomposition of G, lifted-smw(G’) ≤ 3*smw(G)

Lemma: For any primal graph G’ in split
decomposition of G, lifted-smw(G’) ≤ 3*smw(G)

Lemma: For primal graphs lifted-smw can be 6-
approximated in 2O(lifted-smw)-time

Lemma: For any primal graph G’ in split
decomposition of G, lifted-smw(G’) ≤ 3*smw(G)

Theorem: smw(G) can be 18-approximated in
2O(smw(G))-time

Lemma: For primal graphs lifted-smw can be 6-
approximated in 2O(lifted-smw)-time

Conclusion

- Using lifted-smw we can 18-approximate smw
- Combined with improved DP algo gives 2O(smw

(G))-time Hamiltonian Cycle algorithm
- Combined with previous DP algorithms of
 S.,Telle’14

- Edge Dominating Set in 2O(smw(G))-time
- Chromatic Number in smw(G)O(smw(G))-time
- Max-Cut in 2O(smw(G))-time

All optimal under Exponential Time Hypothesis.

Thank you

