Parameterized Analogues of Probabilistic Computation

Ankit Chauhan Raghavendra Rao B.V.

Department of Computer Science and Engineering IIT Madras

February 8, 2015

Outline

- Introduction
 - Parameterized Complexity
 - Parameterized Counting Complexity
- Probabilistic Computation
- 3 Computational Problems
 - Parameterized Arithmetic Circuit Identity Testing
 - Parameterized Permanent v/s Parameterized Determinant
- 4 Conclusion

Outline

- Introduction
 - Parameterized Complexity
 - Parameterized Counting Complexity
- - Parameterized Arithmetic Circuit Identity Testing
 - Parameterized Permanent v/s Parameterized Determinant

Why Parameterized Complexity?

 Classical complexity theory analyzes and classifies problems by time or space of input.

Why Parameterized Complexity?

- Classical complexity theory analyzes and classifies problems by time or space of input.
- Sometimes considering parameters based on structural properties makes problems easier.

Why Parameterized Complexity?

- Classical complexity theory analyzes and classifies problems by time or space of input.
- Sometimes considering parameters based on structural properties makes problems easier.
- Parameterized Complexity analyse problem with an additional parameter which depend on input instance in some way.

Why Parameterized Complexity?

- Classical complexity theory analyzes and classifies problems by time or space of input.
- Sometimes considering parameters based on structural properties makes problems easier.
- Parameterized Complexity analyse problem with an additional parameter which depend on input instance in some way.
- Provide more fine-tuned analysis of harder problems.

Motivating Examples

 Evaluating a database query. Database is normally very big and guery size is small. Query size is parameter.

Motivating Examples

- Evaluating a database query. Database is normally very big and guery size is small. Query size is parameter.
- Solvable in $O(n^k)$, where n is database size and k is the parameter.

Motivating Examples

- Evaluating a database query. Database is normally very big and guery size is small. Query size is parameter.
- Solvable in $O(n^k)$, where n is database size and k is the parameter.
- Generally k is very small as compared to database size.

Parameterized Complexity

Definition (Parameterized Problem)

parameterized problem is a set $P \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a finite alphabet. If $(x, k) \in \Sigma^* \times \mathbb{N}$ is an instance of a parameterized problem, we refer to x as the input and to k as the parameter.

Definition (Fixed-Parameter Tractable or fpt Problem)

A parameterized problem $P \subseteq \Sigma^* \times N$ is fixed-parameter tractable if there is an algorithm that solves P in f(k).p(n) time where f(k) is an arbitrary computable function.

Parameterized Complexity

Definition (Parameterized Problem)

parameterized problem is a set $P \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a finite alphabet. If $(x, k) \in \Sigma^* \times \mathbb{N}$ is an instance of a parameterized problem, we refer to x as the input and to k as the parameter.

Definition (Fixed-Parameter Tractable or fpt Problem)

A parameterized problem $P \subseteq \Sigma^* \times N$ is fixed-parameter tractable if there is an algorithm that solves P in f(k).p(n) time where f(k) is an arbitrary computable function.

• p-VC is in FPT. [Downey-Fellow '99]

W-Hierarchy

Problem (p - WSat(C))

Instance: A circuit C and $k \in \mathbb{N}$.

Parameter: k

Problem: Decide whether C is k-satisfiable.

W-Hierarchy

Problem (p - WSat(C))

Instance: A circuit C and $k \in \mathbb{N}$.

Parameter: k

Problem: Decide whether C is k-satisfiable.

Definition (W[P])

$$W[P] = [p-WSat(C)]^{FPT}.$$

W-Hierarchy

Definition (W-hierarchy)

 $W[t] = [p - WSat(C_{(t)}, t \ge 1]^{FPT}$, where t is the maximum number of unbounded fan-in gate in a path from leave to root.

W-Hierarchy

Definition (W-hierarchy)

 $W[t] = [p - WSat(C_{(t)}, t \ge 1]^{FPT}$, where t is the maximum number of unbounded fan-in gate in a path from leave to root.

• p - Clique, p - Independent Set are W[1] complete.

W-Hierarchy

Definition (W-hierarchy)

 $W[t] = [p - WSat(C_{(t)}, t \ge 1]^{FPT}$, where t is the maximum number of unbounded fan-in gate in a path from leave to root.

- p Clique, p Independent Set are W[1] complete.
- p dominating Set, p Hitting Set are W[2] Complete.

Outline

Introduction

- Introduction
 - Parameterized Complexity
 - Parameterized Counting Complexity
- Probabilistic Computation
- Computational Problems
 - Parameterized Arithmetic Circuit Identity Testing
 - Parameterized Permanent v/s Parameterized Determinant
- 4 Conclusion

Parameterized Counting Complexity

Definition (Parameterized Counting Problem)

A parameterized Counting problem is a set $F: \Sigma^* \times \mathbb{N} \to \mathbb{N}$, where Σ is alphabet set.

Definition (Parameterized Counting Problem)

A parameterized Counting problem is a set $F: \Sigma^* \times \mathbb{N} \to \mathbb{N}$, where Σ is alphabet set.

Definition (Fixed-Parameter Tractable Counting Problem)

A counting parameterized problem is fixed-parameter tractable if there an algorithm computing F(x,k) in at most $f(k)|x|^c$ steps, where f is an arbitrary computable function.

Definition (Parameterized Counting Problem)

A parameterized Counting problem is a set $F: \Sigma^* \times \mathbb{N} \to \mathbb{N}$, where Σ is alphabet set.

Definition (Fixed-Parameter Tractable Counting Problem)

A counting parameterized problem is fixed-parameter tractable if there an algorithm computing F(x,k) in at most $f(k)|x|^c$ steps, where f is an arbitrary computable function.

 p-#VC are Fixed-Parameter Tractable Counting Problem i.e, in FPT

#W-Hierarchy

Problem (p - #WSat(C))

Instance: A circuit C and $k \in \mathbb{N}$.

Parameter: k

Problem: To count the k-satisfiable assignment in C.

Definition (#W[P])

$$\#W[P] = [p - \#WSat(C)]^{FPT}.$$

Machine Characterization of W[P]

Definition (*k*-restricted T.M.)

A k-restricted Turing machine is a non-deterministic g(k) poly(n) time bounded Turing machine that makes at most f(k) log n non-deterministic moves, where f and g are arbitrary computable functions.

Machine Characterization of W[P]

Definition (*k*-restricted T.M.)

A k-restricted Turing machine is a non-deterministic g(k) poly(n) time bounded Turing machine that makes at most f(k) log n non-deterministic moves, where f and g are arbitrary computable functions.

 W[P] is the class of all parameterized problems (Q, k) that can be decided by a k-restricted non-deterministic Turing machine. [Chen, Flum, Grohe '03]

Definition (#W[P])

A parameterized counting function (f, k) over the alphabet Σ is in #W[P] if there is a k-restricted non-deterministic Turing machine M such that $f(x, k) = \#acc_M(x, k)$.

Definition (W[P]-PFPT)

Let L be a parametrized language. L is said to be in the class W[P]-PFPT if and only if if there is a k-restricted probabilistic Turing machine M such that for any $(x, k) \in \Sigma^* \times \mathbb{N}$ we have,

$$(x,k) \in L \Rightarrow \Pr[M \text{ accepts } (x,k)] > \frac{1}{2}; \text{ and}$$

 $(x,k) \notin L \Rightarrow \Pr[M \text{ accepts } (x,k)] \leq \frac{1}{2}$

where the probabilities are over the random choices made by M.

Definition (Diff-FPT, Gap-FPT)

A parametrized function $f: \Sigma^* \times k \to \mathbb{Z}$ is said to be in Diff-FPT if there are two functions $g, h \in \#W[P]$ such that f(x,k) = g(x,k) - h(x,k).

f is said to be in Gap-FPT if there is a k-restricted TM M such that $f(x, k) = \#acc_M(x, k) - \#rej_M(x, k), \forall (x, k) \in \Sigma^* \times k$.

Definition (Diff-FPT, Gap-FPT)

A parametrized function $f: \Sigma^* \times k \to \mathbb{Z}$ is said to be in Diff-FPT if there are two functions $g, h \in \#W[P]$ such that f(x, k) = g(x, k) - h(x, k).

f is said to be in Gap-FPT if there is a k-restricted TM M such that $f(x, k) = \#acc_M(x, k) - \#rej_M(x, k)$, $\forall (x, k) \in \Sigma^* \times k$.

Lemma

- Gap-FPT = Diff-FPT
- ② Gap-FPT is closed under taking p-bounded summations and products, i.e., if $g_1, \ldots, g_{t(k)} \in \mathsf{Gap}\text{-}\mathsf{FPT}$, then so are $g_1 + g_2 \cdots + g_{t(k)}$ and $g_1 \times g_2 \times \cdots \times g_{t(k)}$

Theorem (Structural Properties)

Theorem (Structural Properties)

Let L be a parameterized language. The following are equivalent:

Theorem (Structural Properties)

- \bullet $L \in W[P]$ -PFPT.
- ② There is a k-restricted Turing machine M such that $(x,k) \in L \iff \#\text{accept}_M(x,k) \#\text{reject}_M(x,k) > 0$.

Theorem (Structural Properties)

- $L \in W[P]$ -PFPT.
- ② There is a k-restricted Turing machine M such that $(x,k) \in L \iff \#\text{accept}_M(x,k) \#\text{reject}_M(x,k) > 0.$
- **③** There is a function $f \in \text{Gap-FPT}$ such that $(x, k) \in L \iff f(x, k) > 0$

Theorem (Structural Properties)

- \bullet $L \in W[P]$ -PFPT.
- ② There is a k-restricted Turing machine M such that $(x, k) \in L \iff \#\text{accept}_M(x, k) \#\text{reject}_M(x, k) > 0$.
- **③** There is a function $f \in \text{Gap-FPT}$ such that $(x, k) \in L \iff f(x, k) > 0$
- **●** There is a $B \in \mathsf{FPT}$, and $P(n,k) = f(k) \log n$ such that $(x,k) \in L \iff |\{y \in \{0,1\}^{P(n,k)} \mid (x,y,k) \in B\}| \ge 2^{P(n,k)-1} + 1$.

Theorem (Closure properties)

- W[P]-PFPT is closed under complementation.
- W[P]-PFPT is closed under symmetric difference.

Theorem

$$\mathsf{FPT}^{\#\mathsf{W}[\mathsf{P}]} = \mathsf{FPT}^{\mathsf{W}[\mathsf{P}]-\mathsf{PFPT}}$$

Parameterized Arithmetic Circuit Identity Testing

Outline

- Introduction
 - Parameterized Complexity
 - Parameterized Counting Complexity
- Probabilistic Computation
- 3 Computational Problems
 - Parameterized Arithmetic Circuit Identity Testing
 - Parameterized Permanent v/s Parameterized Determinant
- 4 Conclusion

Parameterized Arithmetic Circuit Identity Testing

Definitions

Definition (Arithmetic Circuit)

An arithmetic circuit C is a directed acyclic graph where nodes of in-degree zero are called input gates and are labelled by $\{-1,0,1\} \cup \{x_1,\ldots,x_n\}$ where x_1,\ldots,x_n are the input variables. The remaining gates are labelled \times or +.

Definitions

Definition (Arithmetic Circuit)

An arithmetic circuit C is a directed acyclic graph where nodes of in-degree zero are called input gates and are labelled by $\{-1,0,1\} \cup \{x_1,\ldots,x_n\}$ where x_1,\ldots,x_n are the input variables. The remaining gates are labelled \times or +.

Computational Problems 00000000

Definition (Syntactic Degree)

Every gate of an arithmetic circuit C. For a leaf node v, syntdeg(v) = 1. If $v = v_1 + v_2$ then syntdeg(v) = max{syntdeg(v_1), syntdeg(v_2)} and if $v = v_1 \times v_2$ then $deg(v) = syntdeg(v_1) + syntdeg(v_2)$

Parameterized Random Classes

Definition (RFPT)

Class of languages for which there exist f(k)poly(n) time bounded randomized algorithm accepting languages with bounded one-sided error probability.

Definition (W[P]-RFPT)

Class of languages for which there exist f(k) poly(n) time bounded randomized algorithm accepting languages with bounded one-sided error probability and $g(k) \log(n)$ probabilistic moves.

Problem Description

Problem (p-acit (Müller'08))

Input: Arithmetic circuit C, syntdeg $(C) \leq k$.

Parameter: k.

Task: Test if the polynomial computed by C is identically zero.

• Classical randomized algorithm using Schwartz-Zipple Lemma problem will be in RFPT as it will use $O(n \log k)$ probabilistic moves.

Problem Description

Problem (p-acit (Müller'08))

Input: Arithmetic circuit C, syntdeg $(C) \leq k$.

Parameter: k.

Task: Test if the polynomial computed by C is identically zero.

- Classical randomized algorithm using Schwartz-Zipple Lemma problem will be in RFPT as it will use $O(n \log k)$ probabilistic moves.
- Challenge is to solve this problem using W[P]-RFPT algorithm.

0000

Parameterized Arithmetic Circuit Identity Testing

Theorem

Theorem p-acit is in W[P]-RFPT

Idea.

Theorem

Theorem

p-acit is in W[P]-RFPT

Idea.

Modify Circuit using Black Box

Theorem

Theorem

p-acit is in W[P]-RFPT

Idea.

Modify Circuit using Black Box

Now apply Schwartz-Zipple Lemma on modified Circuit.

Function of BlackBox

• Let f be an n-variate polynomial of degree at most k. Then

$$f \equiv 0 \iff \forall a \in W_n^k(S), f(a) = 0,$$

where $S \subset \mathbb{K}$ has at least k+1 elements and let $W_n^k(S)$ the set of all vectors of Hamming weight at most k.

Function of BlackBox

Definition (Shpilka-Volkovich Hitting set generator)

Let a_1, \ldots, a_n be distinct elements in \mathbb{K} . Let $G_k^i \in \mathbb{K}[y_1, \ldots, y_k, z_1, \ldots, z_k]$ be the polynomial defined as follows:

$$G^i(y_1,\ldots,y_k,z_1,\ldots,z_k) = \sum_{j=1}^k L_i(y_j)z_j, \ \text{ where } L_i(x) = \frac{\prod_{j\neq i}(x-a_j)}{\prod_{j\neq i}(a_i-a_j)}.$$

The generator G is defined as $G \stackrel{\triangle}{=} (G^1, \dots, G^n)$.

Function of BlackBox

• Let f be an n-variate polynomial of degree at most k. Then

$$f \equiv 0 \iff \forall a \in W_n^k(S) \ f(a) = 0,$$

0000000

where $S \subset \mathbb{K}$ has at least k+1 elements and let $W_n^k(S)$ the set of all vectors of Hamming weight at most k.

• For any finite set $S \subset \mathbb{K}$, then $W_n^k(S) \subset \{(G_{\iota}^1(a), \ldots, G_{\iota}^n(a)) \mid a \in (S \cup \{a_1, \ldots, a_n\})^{2k}\}.$

Function of BlackBox

• Let f be an n-variate polynomial of degree at most k. Then

$$f \equiv 0 \iff \forall a \in W_n^k(S) \ f(a) = 0,$$

where $S \subset \mathbb{K}$ has at least k+1 elements and let $W_n^k(S)$ the set of all vectors of Hamming weight at most k.

- For any finite set $S \subset \mathbb{K}$, then $W_n^k(S) \subset \{(G_k^1(a), \ldots, G_k^n(a)) \mid a \in (S \cup \{a_1, \ldots, a_n\})^{2k}\}.$
- Let f be a polynomial of degree at most k. Then $f \equiv 0 \iff f(G_k) \equiv 0.$

Parameterized Permanent v/s Parameterized Determinant

Outline

- Introduction
 - Parameterized Complexity
 - Parameterized Counting Complexity
- Probabilistic Computation
- 3 Computational Problems
 - Parameterized Arithmetic Circuit Identity Testing
 - Parameterized Permanent v/s Parameterized Determinant
- 4 Conclusion

Parameterized Permanant vs Parameterized Determinent

Definition (Permanant, Determinant)

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$
 (1)

$$\operatorname{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}, \tag{2}$$

Definition

A permutation $\sigma \in S_n$ is said to be a k-permutation, if $|\{i \mid \sigma(i) \neq i\}| = k$. Let $S_{n,k}$ denote the set of all k-permutations on n symbols.

Parameterized Permanant vs Parameterized Determinent

Definition

Let k be a parameter. The parametrized determinent function and parametrized permanent function p-perm of a matrix $A \in \mathbb{Z}^{n \times n}$ is defined as follows:

$$\operatorname{p-det}(A) = \sum_{\sigma \in S_n \text{is a } k\text{-permutation}} \operatorname{sgn}(\sigma) \prod_{i \neq \sigma(i)} A_{i\sigma(i)}$$

$$\operatorname{p-perm}(A) = \sum_{\sigma \in S_n \text{ is a } k \text{-permutation } i \neq \sigma(i)} \prod_{i \neq \sigma(i)} A_{i\sigma(i)}$$

Parameterized Permanent v/s Parameterized Determinant

Parameterized Permanant vs Parameterized Determinent

Theorem

p-perm is #W[1] complete. The hardness holds even in the case of 0-1 matrices.

$\mathsf{Theorem}$

p-det on integer matrices is fixed parameter tractable

 Definition of W[P]-PFPT leads to further developments in the structural aspects of probabilistic and counting complexities in the parameterized world.

- Definition of W[P]-PFPT leads to further developments in the structural aspects of probabilistic and counting complexities in the parameterized world.
- W[P]-PFPT might be useful in defining a parameterized variant of the Counting Hierarchy (CH).

- Definition of W[P]-PFPT leads to further developments in the structural aspects of probabilistic and counting complexities in the parameterized world.
- W[P]-PFPT might be useful in defining a parameterized variant of the Counting Hierarchy (CH).
- Is W[P]-PFPTclosed under intersection?

- Definition of W[P]-PFPT leads to further developments in the structural aspects of probabilistic and counting complexities in the parameterized world.
- W[P]-PFPT might be useful in defining a parameterized variant of the Counting Hierarchy (CH).
- Is W[P]-PFPTclosed under intersection?
- W[P]-RFPTalgorithm for p-acit opens a new question whether all RFPT algorithms lies in W[P]-RFPT.

Thank You !!!

Combinatorial Nullstellensatz

Lemma (Alon '99)

Let $P \in \mathbb{K}[x_1, ..., x_n]$ be a polynomial where for every $i \in [n]$, the degree of x_i is bounded by t. Let $S \subseteq \mathbb{K}$ be a finite set of size at least t+1, and $A = S^n$. Then $P \equiv 0 \iff P(a) = 0, \forall a \in A$.