Separator Theorems for Interval Graphs and Proper Interval Graphs

B.S. Panda

Department of Mathematics Indian Institute of Technology, Delhi

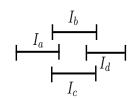
CALDAM 2015

Outline

- Definition of Interval Graphs
- 2 Some Known Characterization of Interval Graphs
- 3 Separator Theorem for Interval Graphs
- 4 Forbidden Subgraph Characterization
- 5 Separator Theorem for Proper Interval Graphs

Interval Graphs

• Interval Graph: A graph G=(V,E) is said to be an interval graph if there exists a finite family F of intervals in a linearly ordered set (like the real line) and there is a one-to-one correspondence $f:V(G)\to F$ such that $uv\in E(G)$ if and only if $f(u)\cap f(v)\neq\emptyset$.



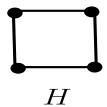


Figure: Example of an Interval Graph and the Interval representation

Figure: Example of not an Interval Graph

Proper Interval Graphs

 Proper Interval Graph: If no interval of F properly contains another interval of F set-theoretically, then G is called a proper interval graph.

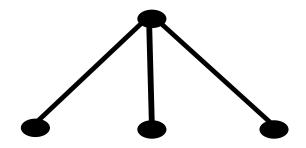


Figure: Example of not a proper interval Graph

unit Interval Graphs

• Unit Interval Graph: If all the intervals in F are unit length, then G is called a unit interval graph.

Remarks

- Note: proper interval graphs are same as unit interval graphs
- **Remark**: Does the definitions of Interval (unit interval) graphs depend on types of Intervals? (closed: [a,b], open: (a,b), open-closed: (a,b], closed-open: (a,b], Mixed:)
- No for Interval Graphs. Yes for unit interval graphs.
- We consider closed Intervals

Interval Graphs are Subclass of Chordal Graphs

Definition

A graph G=(V,E) is said to be a **chordal graph** if every cycle in G of length at least four has a chord, that is, an edge joining two non-consecutive vertices of the cycle.

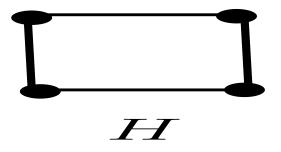


Figure: Example of not a chordal Graph

Maximal Cliques

Definition

- Clique: A subset $C \subseteq V(G)$ of a graph G = (V, E) is called a clique if the induced subgraph G[C], that is, G[C] = (C, E'), where $E' = \{xy | x, y \in C \text{ and } xy \in E(G)\}$, is a complete subgraph of G.
- Maximal Clique: If C is a clique of G and no proper superset of C is a clique, then C is called a maximal clique of G.

Known Characterizations of Interval Graphs

Theorem

[1] An undirected graph G is an interval graph if and only if C(G), the set of maximal cliques of G can be linearly ordered such that for each vertex xof G, $C_x(G)$ the maximal cliques containing x occur consecutively.

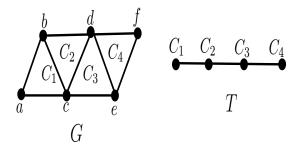


Figure: Example of an interval Graph and its clique tree

Known Characterizations of Interval Graphs

Theorem (Clique Tree Theorem)

A graph G is an interval graph if and only if there exists a path T such that V(T) = C(G) and for every vertex v of G, $T[C_v(G)]$ is a subpath of T.

The path T satisfying Clique Tree Theorem is called an **interval clique** tree of the interval graph G.

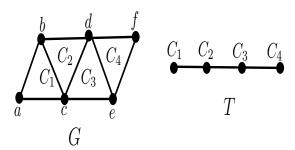


Figure: Example of an interval Graph and its clique tree

Separated Subgraphs

Definition

- Separated Subgraphs: If $G \setminus C$ is disconnected by a maximal clique C into components $H_i = (V_i, E_i)$, $1 \le i \le r$, $r \ge 2$, then C is said to be a separating clique and $G_i = G[V_i \cup C]$, $1 \le i \le r$ is said to be a separated graph of G with respect to C.
- Monma and Wei [4] (JCT Ser B 1986) have characterized various subclasses of chordal graphs in terms of their separated subgraphs. The characterizations so obtained are called **separator theorems**. Separator theorems play an important role in designing algorithms in subclasses of chordal graphs.

Separated Subgraphs

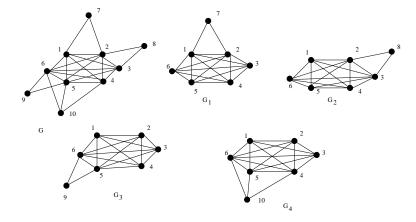
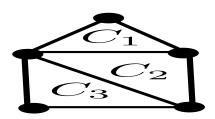


Figure: Example of the separation of G into G_1, G_2, G_3 , and G_4 by $C = \{1, 2, 3, 4, 5, 6\}$

Definition

Let G be a chordal graph, and G_i , $1 \leq i \leq r$, $r \geq 2$ be the separated graphs of G with respect to some separating clique C of G. Cliques which intersect C but not equal to C are called **relevant cliques** with respect to C. For a separated graph G_i , let $W(G_i) = \{v \in C | \text{ there is a vertex } w \in (V(G_i) \setminus C) \text{ such that } vw \in E(G_i)\}$. Relevant cliques of G_i which contain $W(G_i)$ are called **principal cliques** of G_i .

The existence of a principal clique of any separated graph of a chordal graph is assured by the following result due to Panda et al.[5]



Relation between relevant Cliques

In the following definitions, only relevant cliques are considered.

Definition

Let C_1 and C_2 be two cliques of G. We say

- (1) C_1 and C_2 are **unattached**, denoted $C_1|C_2$, if $C_1 \cap C \cap C_2 = \emptyset$; otherwise, they are attached,
- (2) C_1 dominates C_2 , denoted $C_1 \ge C_2$, if $C_1 \cap C \supseteq C_2 \cap C$,
- (3) C_1 properly dominates C_2 , denoted $C_1 > C_2$, if $C_1 \cap C \supset C_2 \cap C$,
- (4) C_1 and C_2 are **congruent**, denoted $C_1 \sim C_2$, if they are attached and $C_1 \cap C = C_2 \cap C$, and
- (5) C_1 and C_2 are **antipodal**, denoted $C_1 \iff C_2$, if they are attached and neither dominates the other.

Relations between Separated Subgraphs

Definition

Let G_1 and G_2 be two separated graphs of G with respect to C. We say

- 1. G_1 and G_2 are **unattached**, denoted $G_1 \mid G_2$, if $C_1 \mid C_2$ for every clique C_1 in G_1 and for every clique C_2 in G_2 ; otherwise, they are attached,
- 2. G_1 dominates G_2 , denoted $G_1 \geq G_2$, if they are attached and for every clique C_1 in G_1 , $C_1 \geq C_2$ for all cliques C_2 in G_2 or $C_1 \mid C_2$ for all cliques C_2 in G_2 ,
- 3. G_1 properly dominates G_2 , denoted $G_1 > G_2$, if $G_1 \ge G_2$ but not $G_2 \ge G_1$,
- 4. G_1 and G_2 are congruent, denoted $G_1 \sim G_2$, if G_1 dominates G_2 and G_2 dominates G_1 ; in this case, $C_1 \sim C_2$ for all C_1 in G_1 and for all C_2 in G_2 , and
- 5. G_1 and G_2 are **antipodal**, denoted $G_1 \iff G_2$, if they are attached and neither dominates the other.

A separated graph G_i with respect to C is said to be **strictly relevant** if it has no nonrelevant cliques. Let $X(G_i)$ be the set of cliques of G_i excluding C. Then, $\pi(V_i) = T[X(G_i)]$. Let $\pi(v)$ denote the path (consisting of vertices) in T corresponding to $v \in V$.

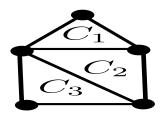


Figure: Strictly relevant separated graph

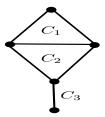


Figure: not a strictly relevant graph

Separator Theorem for Interval Graphs

Theorem (Separator Theorem)

Let G_1, G_2, \ldots, G_r , r > 1 be the separated graphs of a chordal graph G with respect to a separating clique C. Then G is an interval graph if and only if

- (i) each G_i is an interval graph,
- (ii) the set of separated graphs can be 2-colored such that no two antipodal graphs receive the same color,
- (iii) in each color class no two relevant cliques are unattached, and
- (iv) in each color class all separated graphs, except possibly one, are strictly relevant. The exceptional graph in (iv), should it exist, must be dominated by every separated graphs of like color.

Sketch of the Proof

Key: Uses the following theorem

Theorem

A graph G is an interval graph if and only if there exists a path T such that V(T)=C(G) and for every vertex v of G, $T[C_v(G)]$ is a subpath of T.

Result:

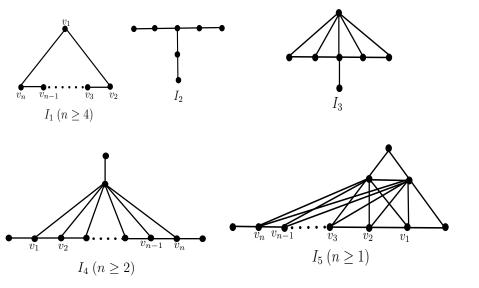
Let C separate G into separated graphs G_1, G_2, \ldots, G_r , $r \geq 2$.

Lemma

If G is an interval graph, then each G_i is an interval graph with a clique tree T_i having C as an end vertex.

Forbidden Subgraph Characterization

- A graph class admits forbiddeb subgraph characterization iff it is closed under vertex induced subgraph.
- Interval graphs is closed under vertex induced subgraphs. Hence admits forbidden subgraph characterization.
- Lekkerker and Boland, (Representation of a finite graphs by a set of interval on a real line, Fundam. Math 51 (1962) 45-64), obtained the forbidden subgraphs for Interval graphs.
- The forbiden subgraph characterization for interval graph can be obtained from our separator Theorem.



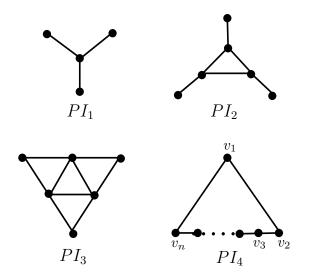
Forbidden Subgraphs of Interval Graphs

Theorem

[Separator Theorem] Let G_1, G_2, \ldots, G_r , r > 1 be the separated graphs of a chordal graph G with respect to a separating clique C. Then G is a proper interval graph if and only if

- (i) r = 2.
- (ii) Each G_i is a proper interval graph,
- (iii) If $W(G_1) \cap W(G_2) \neq \emptyset$, then $W(G_1) \cup W(G_2) = C$, and there is exactly one clique C_i in G_i intersecting $W(G_1) \cap W(G_2)$, i = 1, 2, and

Forbidden Subgraphs for proper Interval Graphs



References

- [1] P.C.Gilmore and A.J.Hoffman, A Characterization of Comparability Graphs and Interval Graphs, Canadian J. Maths. 16 (1964) 539-548.
- [2]M.C.Golumbic (Ed.), Interval Graphs and Related Topics, Discrete Math. 55 (1985).
- [3]M.C.Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
- [4]C.L.Monma and V.K.Wei, Intersection Graphs of Paths in a Tree, J. Combin. Theory Ser-B 41 (1986) 141-181.
- [5]B.S.Panda and S.P.Mohanty, Intersection Graphs of Vertex Disjoint Paths in a Tree, Discrete Math. 146 (1995) 179-209.

Contd...

- [6]B.S.Panda, The forbidden Subgraph Characterization of Directed Vertex Graphs, Discrete Math. 196 (1999) 239-256.
- [7]C.G.Lekkerkerker, and J.C. Boland, Representation of a finite graph by a set of interval on the real line, Fundam. Math. 51 (1962) 45-64.
- [8]C.Papadimitriou and M.M. Yanakakis, Scheduling Interval Ordered Tasks, SIAM J. Comput. 8 (1979), 405-409.
- [9] F.S.Roberts, Discrete Mathematical Model with Applications to Social, Biological and Environmental Problems, Prentice Hall, Englewood Cliff, NJ, 1976.
- [10] F.S.Roberts, Indifference Graphs, in: Proof Techniques in Graph Theory, (F.Harary ed.) Academic Press, New York (1971) 139-146.

Thank you

