Preliminaries Connectivity Hamiltonicity Matching

Higher Order Triangular Distance Delaunay Graphs

Ahmad Biniaz, Anil Maheshwari, Michiel Smid

Carleton University

February 8, 2015

Outline

- Higher-Order Triangular-Distance Delaunay Graphs
 - Definition
 - Connectivity
 - Bottleneck Biconnected Graph
 - Bottleneck Hamiltonian Cycle
 - Bottleneck Perfect Matching
 - Maximum Matching
 - Blocking

•

•

•

•

■ 1-TD contains a bottleneck biconnected graph.

Bottleneck Hamiltonian Cycle

Bottleneck Hamiltonian Cycle

Bottleneck Hamiltonian Cycle

$$ws(C_2) < ws(C_1) < ws(C_3)$$

- We show that a minimal Hamiltonian cycle is in 7-TD.
- We prove that all edges of a minimal cycle are in 7-TD.

■ 7-TD contains a bottleneck Hamiltonian cycle.

■ 7-TD contains a bottleneck Hamiltonian cycle.

■ 7-TD contains a bottleneck Hamiltonian cycle.

Lower Bound

- 5-TD may not contain any bottleneck Hamiltonian cycle.
- 6-TD? (open problem)

Bottleneck Perfect Matching

- 6-TD contains a bottleneck perfect matching.
- 5-TD may not contain any bottleneck perfect matching.

Tutte-Berge Formula for Maximum Matching

The size of a maximum matching in G is $\frac{1}{2}(n-d(G))$, where $d(G) = \max\{o(G-S) - |S|\}$, for all $S \subset V(G)$.

Tutte-Berge Formula for Maximum Matching

■ The size of a maximum matching in G is $\frac{1}{2}(n-d(G))$, where $d(G) = \max\{o(G-S) - |S|\}$, for all $S \subset V(G)$.

■ We remove a set *S* from TD and present an upper bound on the number of the resulting components.

Remove a set S from TD

Remove a set S from TD

- lacktriangleright m: the number of components after removing vertices in S.
- |MST| = m 1

- \blacksquare m: the number of components after removing vertices in S.
- |MST| = m 1, and every triangle in MST is empty.

- \blacksquare m: the number of components after removing vertices in S.
- |MST| = m 1, and every triangle in MST is empty.

- ullet m: the number of components after removing vertices in S.
- |MST| = m 1, and every triangle in MST is empty.
- Each point in *S* is in at most three triangles of *MST*.

■ Each point in S is in at most three triangles of MST.

- Each point in *S* is in at most three triangles of *MST*.
- 2-TD: each triangle contains at least 3 points of S
- 1-TD: each triangle contains at least 2 points of S

- Each point in *S* is in at most three triangles of *MST*.
- 2-TD: each triangle contains at least 3 points of $S \rightarrow m \le |S| + 1$.
- 1-TD: each triangle contains at least 2 points of S $\rightarrow m \leq \frac{3 \cdot |S|}{2} + 1$.

- Each point in *S* is in at most three triangles of *MST*.
- 2-TD: each triangle contains at least 3 points of $S \rightarrow m \le |S| + 1$.
- 1-TD: each triangle contains at least 2 points of S $\rightarrow m \leq \frac{3 \cdot |S|}{2} + 1$.
- 2-TD has a perfect matching.

- Each point in *S* is in at most three triangles of *MST*.
- 2-TD: each triangle contains at least 3 points of $S \rightarrow m \le |S| + 1$.
- 1-TD: each triangle contains at least 2 points of S $\rightarrow m \leq \frac{3 \cdot |S|}{2} + 1$.
- 2-TD has a perfect matching.
- 1-TD has a matching of size at least $\frac{2(n-1)}{5}$.

- Each point in *S* is in at most three triangles of *MST*.
- 2-TD: each triangle contains at least 3 points of $S \rightarrow m \le |S| + 1$.
- 1-TD: each triangle contains at least 2 points of S $\rightarrow m \leq \frac{3 \cdot |S|}{2} + 1$.
- 2-TD has a perfect matching.
- 1-TD has a matching of size at least $\frac{2(n-1)}{5}$.
- 0-TD has a matching of size at least $\frac{n-1}{3}$ (tight), [Babu et al.].

- Each point in *S* is in at most three triangles of *MST*.
- 2-TD: each triangle contains at least 3 points of $S \rightarrow m \le |S| + 1$.
- 1-TD: each triangle contains at least 2 points of S $\rightarrow m \leq \frac{3 \cdot |S|}{2} + 1$.
- 2-TD has a perfect matching.
- 1-TD has a matching of size at least $\frac{2(n-1)}{5}$.
- 0-TD has a matching of size at least $\frac{n-1}{3}$ (tight), [Babu et al.].
- open problem: better lower bound for 1-TD.

Blocking k-TD

- At least $\frac{(k+1)(n-1)}{3}$ points are necessary to block any k-TD.
- (k+1)(n-1) points are sufficient to block any k-TD.

Blocking k-TD

- At least $\frac{(k+1)(n-1)}{3}$ points are necessary to block any k-TD.
- (k+1)(n-1) points are sufficient to block any k-TD.

Blocking k-TD

- At least $\frac{(k+1)(n-1)}{3}$ points are necessary to block any k-TD.
- (k+1)(n-1) points are sufficient to block any k-TD.

Summary of Results

bottleneck	TD	GG	RNG
biconnected	1-TD	1-GG	1-RNG [Chang et al.]
matching	6-TD	17-GG	17-RNG [Chang et al.]
Hamiltonicity	7-TD	10-GG [Kaiser et al.]	19-RNG [Chang et al.]

- k-TD is (k+1) connected.
- $\frac{(k+1)(n-1)}{3}$ points necessary, (k+1)(n-1) points sufficient to block k-TD.

matching	TD	GG
2-order	$\frac{n}{2}$	$\frac{n}{2}$ [Biniaz et al.]
1-order	$\frac{2(n-1)}{5}$	$\frac{2(n-1)}{5}$ [Biniaz et al.]
0-order	$\frac{n-1}{3}$ [Babu et al.]	$\frac{n-1}{4}$ [Biniaz et al.]

Open problems

- What is a tight lower bound for the size of maximum matching in 1-TD?
- Does 6-TD contain a bottleneck Hamiltonian cycle?
- For which values of k = 1, ..., 6, is the graph k-TD Hamiltonian?

Thank you

Any question?

References

J. Babu, A. Biniaz, A. Maheshwari, and M. Smid.

Fixed-orientation equilateral triangle matching of point sets. *Theor. Comput. Sci.*, 555:55–70, 2014.

A. Biniaz, A. Maheshwari, and M. Smid.

Matching in Gabriel graphs. arXiv: 1410.0540, 2014.

M.-S. Chang, C. Y. Tang, and R. C. T. Lee.

20-relative neighborhood graphs are Hamiltonian. *Journal of Graph Theory*, 15(5):543–557, 1991.

M.-S. Chang, C. Y. Tang, and R. C. T. Lee.

Solving the Euclidean bottleneck biconnected edge subgraph problem by 2-relative neighborhood graphs.

Discrete Applied Mathematics, 39(1):1–12, 1992.

M.-S. Chang, C. Y. Tang, and R. C. T. Lee.

Solving the Euclidean bottleneck matching problem by k-relative neighborhood graphs. Algorithmica, 8(3):177–194, 1992.

T. Kaiser, M. Saumell, and N. V. Cleemput.

10-Gabriel graphs are Hamiltonian. arXiv: 1410.0309, 2014.