New Polynomial Case for Efficient Domination in FPs;-free Graphs
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Efficient Dominating Sets in Graphs
Efficient Dominating Set (EDS):

A subset D of vertices such that D is an independent set and
each vertex outside D has exactly one neighbor in D.
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Efficient Dominating Sets in Graphs
Efficient Dominating Set (EDS):

A subset D of vertices such that D is an independent set and
each vertex outside D has exactly one neighbor in D.

Examples

e Path P, for all n.
e Cycle C,, if and only of n = mod 3.

e Complete graph K, for all n.



WEIGHTED EFFICIENT DOMINATING SET (WED) Problem

If S C V(G), then w(S):= Total weight of vertices in S.

INSTANCE: Weighted graph (G, w), a positive integer k.

QUESTION: Does there exists an efficient dominating set D of G
such that w(D) < k7



WED vs Graph Classes

e WED remains N P-complete on restricted classes of graphs
such as

— bipartite graphs [31]
— planar bipartite graphs [25]
— chordal bipartite graphs [25]

— chordal graphs [31]
— etc.,



WED vs Graph Classes

e WED is solvable in polynomial time for the graph classes such
as

— trees [2, 14]

— co-comparability graphs [8, 11]
— split graphs [9]

— interval graphs [10, 11]

— circular-arc graphs [9, 19]

— permutation graphs [20]

— trapezoid graphs [20], etc.,



Graphs defined by forbidden induced subgraphs
Let F = {H1, Ho, Hs, ...} be a family of graphs.

A graph G is said to be F-free if no induced subgraph of GG is
iIsomorphic to H;, for every 1.

Examples

Bipartite graphs : (5. 1-free, £ > 1 (Konig’s Theorem).
Chordal graphs : C).-free, & > 4.

Line graphs : A family of 9 forbidden subgraphs (Beineke).

Perfect graphs ' : {Cop41, CS, ., }-free, k > 2 (SPGT [12)).

LGraph G with x(H) = w(H),V H C G.



WED vs H-free Graphs, H is a path

e Corneil et al. [13]: WED on P,-free graphs (or cographs) can
be solved in polynomial time.
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WED vs H-free Graphs, H is a path

e Corneil et al. [13]: WED on P,-free graphs (or cographs) can
be solved in polynomial time.

e Milanic [26]: WED on Ps-free graphs can be solved in
polynomial time.

e Smart and Slater [29]: WED remains N P-complete for P;-free
graphs.

e The complexity of WED is unknown for Ps-free graphs.



WED vs Ps-free Graphs

e The complexity of WED is unknown for Ps-free graphs.

e WED is shown to be solvable in polynomial time for the
following subclasses of Ps-free graphs:

— (Ps,51.1.3)-free graphs [16]
— (Ps, S1.2.2)-free graphs [4]
— (P, bull)-free graphs [16]




WED for Ps-free Graphs
In this talk, we prove the following:

WED can be solved in polynomial time for

(P, 0—- )-free graphs



Square Graph G* from G
Given graph G = (V, E).

Square graph G* = (V, E'),
where E' = {uv|u,v € V and distg(u,v) € {1,2}}.

Example




Brandstadt, Ficur, Leitert, and Milanic
Information Processing Letters, 115 (2015) 256-262

Theorem 1:

Let G be a graph class for which the Maximum Weight
Independent Set problem is solvable in time T'(|G|) on squares of
graphs from G. Then, WED problem is solvable on graphs in G in
time O(min{nm + n,n*} + T(|G?|), where w < 2.3727 is the
matrix multiplication exponent [33].



Ps-free Graphs

WED can be solved in polynomial time [26]

e Milanic [26]: Let G be a Ps-free graph. If G has an EDS, then
G? is P,-free.

e Corneil et al. [13]: MWIS can be solved in linear-time for
P4-free graphs.

e S0, the results follows by Theorem 1.



(P6, 5’1,173)-free Graphs

WED can be solved in polynomial time [16]

e Karthick [16]: Let G be a (Fs, S1.1.3)-free graph. If G has an
EDS, then G? is Ps-free.

e Lokshantov et al. [22]: MWIS can be solved in polynomial time
for Ps-free graphs.

e S0, the result follows by Theorem 1.



(P, 0—- )-free Graphs

WED can be solved in polynomial time

e Let G be a (Ps, banner)-free graph. If G has an EDS, then G~
is (P, banner)-free.



G:= (Pg, O—o )-free

Suppose that G contains an EDS, say D

Claim : G%is P.-free




G:= (P, 0—' )-free

Assume the contrary that G2 contains an induced P,




G:= (Pg, O—o )-free

Assume the contrary that G2 contains an induced P,

V, V, V, V, V, V,

distg(v,, v,) <2, distg(v,, v3) <2, distg(vs, v,) <2

distg(v,, v5) <2, distg(vs, vg) <2




G:= (Pg, 04 )-free

V, V, V, V, V, V,

distg(vy, v3) =23, distg(vy, vy) 23, distg(vy, v) =3
distg(v,, vg) =23, distg(v,, v,) 23, distg(v,, v) =3
distg(v,, v¢) =23, distg(v;, ve) =23, distg(v;, ve) =3

distg(v,, ve) =3



G:= (P, <>—’ )-free

Case 1: distg(v;, v¢) =1
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G:= (P, O" )-free

Case 1: distg(vs, ve) =1

Case 1.1: distg(v;, v,) =1

VZ V3 V4 d V5 VG

distg(v,, vg) =3



G:= (P, O" )-free

Case 1: distg(vs, ve) =1

Case 1.1: distg(v;, v,) =1

distg(v,, v;) =3
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G:= (P, O—‘ )-free

Case 1: distg(vs, ve) =1

Case 1.2: distg(v;, v,) =2

Claim 1: a, v,, bgD

Assume the contrary




G:= (P, O“ )-free

Case 1: distg(vs, ve) =1

Case 1.2: distg(v;, v,) =2

Supposea €D

Then b,v;,c & D
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G:= (P, O—‘ )-free

Case 1: distg(vs, ve) =1

Case 1.2: distg(v;, v,) =2

V2 Then: v,/a,v,’b € E

Assume the contrary
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G:= (P, <>" )-free

Case 1: distg(vs, ve) =1

Case 1.2: distg(v;, v,) =2

V2 Suppose v,’a ¢ E



G:= (P, O—‘ )-free

Case 1: distg(vs, ve) =1

Case 1.2: distg(v;, v,) =2

So, v,’a,v,’b € E



G:= (P, O—‘ )-free

Case 1: distg(vs, ve) =1

Case 1.2: distg(v;, v,) =2

Then v, D



G:= (P, O—‘ )-free

Case 1: distg(vs, ve) =1

Case 1.2: distg(v;, v,) =2

Claim 2: v’ #v,’




G:= (P, <>" )-free

Case 1: distg(vs, ve) =1

Case 1.2: distg(v;, v,) =2

B a contradiction



G:= (P, <>" )-free

Case 1: distg(vs, ve) =1

Case 1.2: distg(v;, v,) =2

B a contradiction



G:= (P, O—‘ )-free

Case 2: distg(v,, v,) = 2 = distg(vs, vg)




G:= (Pg, O—o )-free

Suppose that G contains an EDS, say D

Claim : G2 is banner-free




G:= (P, O—‘ )-free

Assume the contrary that G2 contains an induced banner




G:= (Pg, O—o )-free

Assume the contrary that G2 contains an induced banner

Vs Vs

distg(vy, v,) €2, distg(v,, v5) <2, distg(vs, v,) <2

distg(vy, v,) <2, distg(vs, ve) <2




G:= (Pg, 04 )-free

Assume the contrary that G2 contains an induced banner

distg(v,, v3) =23, distg(vy, vi) 23, distg(v,, v,) 23

distg(v,, vi) =23, distg(v,, vi) >3




G:= (P, O—‘ )-free

Case 1: distg(v;, ve) =1




G:= (P, O—o )-free

Case 1: distg(v;, ve) =1

distg(v,, ve) 23, distg(v,, vi) =3

I

distg(v,, v5) = 2, distg(v,, v3) =2



G:= (P, O—‘ )-free

Case 1: distg(v;, ve) =1

distg(v,, v3) = 2, distg(v,, v3) =2



G:= (P, O—* )-free

Case 1: distg(v;, ve) =1

distg(v,, v;) =3

I

distg(v,, v,) = 2 or distg(v,, v,) =2 or both



G:= (P, O—* )-free

Case 1: distg(v;, ve) =1

distg(v,, v;) =3

I

distg(v,, v,) = 2 = distg(v,, v,)



G:= (P, O—‘ )-free

Case 1: distg(v;, ve) =1




G:= (P, O—‘ )-free

Case 1: distg(v;, ve) =1

Partial structure of G



G:= (P, O—‘ )-free

Case 1: distg(v;, ve) =1

Claim 1:v,,v,,a,b,c,d ¢D

Assume the contrary
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G:= (P, O—‘ )-free

Case 1: distg(v;, ve) =1

V,’

Thenv,’c,v,’deE



G:= (P, O" )-free
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Case 1: distg(v;, ve) =1

V,’




G:= (P, O—‘ )-free

Case 1: distg(v;, ve) =1

V,’




G:= (P, O—‘ )-free

Case 2: distg(v;, ve) =2




(P, 0—- )-free Graphs

WED can be solved in polynomial time

e Let G be a (Ps, banner)-free graph. If G has an EDS, then G~
is (P, banner)-free.

e Karthick [15]: MWIS can be solved in polynomial time for (P,
banner)-free graphs.

e S0, the result follows by Theorem 1.



Conclusion

e The complexity of WED for Ps-free graphs is unknown.
e The complexity of MWIS for Ps-free graphs is unknown.

e WED and MWIS remains NP-complete for banner-free graphs
[24, 27].

e Showed that WED can be solved in polynomial time for (P,
banner)-free graphs.

e Banner-free graphs include some well studied classes of
graphs such as K, 3-free graphs, C,-free graphs, and P,-free
graphs.
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