# Rectilinear Path Problems in Restricted Memory Setup

Binay K. Bhattacharya Minati De Anil Maheswari Subhas C. Nandy Sasanka Roy

February 8, 2015

# Organization

Introduction

2 Read-only Algorithms

Inplace Algorithms

### Introduction

-

#### Rectilinear Path Problem

The Input: A set  $\mathcal{R}$  of axis-parallel rectangular obstacles, and a pair of points p and q.

Objective: A rectilinear path from p to q of desired type.

#### Memory Models considered

Inplace algorithm: Here the elements of the array  $\mathcal R$  can be swapped during the execution. But, at any time, all the obstacles are available in  $\mathcal R$ 

Read-only algorithm: Here the elements in  $\mathcal{R}$  can only be read (may be multiple times); the writing in the array is not permitted.

### Introduction

#### **Problems Considered**

### Read-only algorithms

- Checking the existance of a xy-monotone path from p to q, and if exists then report it.
  - Complexity results:  $O(\frac{n^2}{s} + n \log s)$  time using O(s) space.
- Reporting an x-monotone path from p to q. Complexity results:  $O(\frac{n^2}{s} + n \log s)$  time using O(s) space.

### Introduction

#### **Problems Considered**

### Inplace algorithms

Preprocess the input rectangles, and

Given two points p and q as query, report a path between p and q.

Arbitrary rectangles: Preprocessing time:  $O(n \log n)$ 

Query answering time:  $O(n^{3/4} + \chi)$ 

Unit squares: Preprocessing time:  $O(n \log n)$ 

Query answering time:  $O(\log n)$ 

Extra space requirement: O(1) for both the problems.

# Read-only Algorithms

# Reporting a path - a simple algorithm

• Join p and q by an L-path.



## Reporting a path - a simple algorithm

- Join p and q by an L-path.
- The corner r is in a rectangle  $R \in \mathcal{R}$ .
- a the point of intersection of  $\overline{pr}$  and R
- b the point of intersection of  $\overline{qr}$  and R



## Reporting a path - a simple algorithm

- Join p and q by an L-path.
- The corner r is in a rectangle  $R \in \mathcal{R}$ .
- a the point of intersection of  $\overline{pr}$  and R
- b the point of intersection of  $\overline{qr}$  and R



• Report the path  $p \rightsquigarrow a \oplus L_path(a \rightarrow x \rightarrow b) \oplus b \rightsquigarrow q$ 

# Computation of the path $p \rightsquigarrow a$

- 1. Set s = p
- 2. Identify a rectangle  $R \in \mathcal{R}$  whose y-span contains y(s), and its left boundary is closest to s.
- 3. Report the path  $s \rightarrow a_1 \rightarrow x_1 \rightarrow y_1 \rightarrow b_1$
- 4. Set  $s = b_1$
- 5. Repeat steps 2 and 3 until a is reached.



# Complexity Results

Time Complexity -  $O(\frac{n^2}{s} + n \log s)$  using O(s) space

### xy-monotone path

Assumption - p is to the bottom-left of q.

x-preferred xy-monotone path

y-preferred xy-monotone path



### xy-monotone path

If q lies in the region bounded by x-preferred xy-path and y-preferred xy-path from p, then there exists xy-monotone path from p to q.



Time complexity for testing:  $O(\frac{n^2}{s} + n \log s)$  using O(s) space

# Reporting the path

 $H_a$  - Horizontal line through a point a.  $V_a$  - Vertical line through a point a.

 $\Pi_1$ : x-preferred xy-path from p up to  $V_q$ .  $\Pi_2$ : (-y)-preferred (-x)(-y)-path from q up to  $H_p$ .

Let  $\Pi_1$  and  $\Pi_2$  intersect at a point r.

Now, report the x-preferred xy-path from p to r, and the (-y)-preferred (-x)(-y)-path from q to r.



# Computing the point r

**Objective:** Compute a vertical line W on which r lies.

#### Useful rectangles

A set of rectangles lying within a pair of vertical lines  $x = \tau_1$  and  $x = \tau_2$  on the two sides of W. Initially,  $\tau_1 = x(p)$  and  $\tau_2 = x(q)$ .

Apply binary search to compute W.

- Compute the median  $\mu$  of the left boundaries of the *useful* rectangles to define  $W: x = \mu$ .
- Compute the x-preferred xy-path from p that intersects W at a point  $\theta_1$ .
- Compute the (-y)-preferred (-x)(-y)-path from q that intersects W at a point  $\theta_2$ .

## Computing the point r

 $y(\theta_1) < y(\theta_2)$ : r is to the left of W.





We set  $\tau_2 = \mu$ .

 $y(\theta_1) > y(\theta_2)$ : r is to the right of W.

.



We set  $\tau_1 = \mu$ .

 $\Pi_2$  intersects  $H_p$  to the right of W. Here also, r is to the right of W.



We set  $\tau_1 = \mu$ .

# Time Complexity

 $M_s$ : - Time required to compute median with O(s) extra space.

- Number of calls of the median finding  $-O(\log n)$ .
- In each level of recursion we can prune the set of useful rectangles.

Thus, the total time to compute r is  $O(\frac{n^2}{s} + n \log s + M_s \log n)$  using O(s) space.

#### Drawback

Printing of the path is not at a stretch from p to q. It is a concatenation of paths  $p \rightsquigarrow r$  and  $q \rightsquigarrow r$ .

# x-monotone path

- Compute x-preferred xy-path from p. Let it hit the top boundary of the bounding box at point  $\alpha$
- Compute (-x)-preferred (-x)y-path from q. Let it hit the top boundary of the bounding box at point  $\beta$
- $x(\alpha) < x(\beta)$ : These two paths do not intersect. Report  $p \leadsto \alpha \to \beta \leadsto q$ .
- $x(\alpha) > x(\beta)$ : Compute the point of intersection r of these two paths. Report the path

 $p \rightsquigarrow r \rightsquigarrow q$ .



Time Complexity:  $O(\frac{n^2}{s} + n \log s)$  using O(s) space.

# **Inplace Algorithms**

### Path query among arbitrary obstacles

#### Problem Statement

Input: A set of axis-parallel rectangles  $\mathcal{R}$  in an array.

 $R_i = [(a_i, b_i), (c_i, d_i)], i = 1, 2, ..., n.$ 

Objective: To preprocess these rectangles in  $\mathcal R$  such that given

any pair of query points p and q, a manhattan path

can be reported easily.

Useful Tool: An inplace k-d tree data structure of Bronnimann et

al. maintained with the tuples

 $(a_i, c_i, b_i, d_i), i = 1, 2, \ldots, n.$ 

# Reporting a path

- Join p and q by an L-path.
- The corner r is in a rectangle R ∈ R.
  a the point of intersection of pr and R
  b the point of intersection of qr and R
  - Report the path  $p \rightsquigarrow a \oplus L_path(a \rightarrow x \rightarrow b) \oplus b \rightsquigarrow q$
- The corner r is not inside any rectangle.
  - Report the path  $p \rightsquigarrow r \oplus r \rightsquigarrow q$



### Reporting a path from p to a

Using 4-d tree, the rectangles intersected by the line [p, a] can be reported in order.

### Time Complexity

Preprocessing:  $O(n \log n)$ 

Reporting the path:  $O(n^{3/4} + \chi)$ , where  $\chi$  is the number of links

in the path.

Extra space requirement: O(1)

# Path Query Among Non-Overlapping Unit Squares

#### The Problem

- ullet Preprocess the given obstacles  ${\cal R}$  in an inplace manner
- to report a path between a given pair of query points using O(1) extra space.

#### Targated Results

- There exists a path of length  $O(\log n)$ .
- Preprocessing time  $O(n \log n)$
- Query time O(log n)

### Preprocessing

#### Definition:

For a unit square  $R \in \mathcal{R}$ 

- its center-point is the point of intersection of its two diagonals,
- its left-point is its top-left corner, and
- its right-point is its top-right corner.

#### Data Structure

An inplace priority search tree  $\mathcal{T}$  with the center-points of the members in  $\mathcal{R}$ .

### Query

### Path from left-point of root $R_r$ to one of the query points p

Easy case: p is above  $R_r$ . Join the left-point of  $R_r$  and p by a L-path.

Otherwise: Search  $\mathcal T$  to report the manhattan path from the

left-point of  $R_r$  and p.

- Let a path from  $R_r$  to  $R_v$  is already computed, and
- p is in the left partition of node v.

Also let v' be the left child of node v.

### p is below the top boundary of $R_{v'}$ :

Here join the left-point of  $R_{\nu}$  and the left-point of  $R_{\nu'}$ , and perform the recursive call with  $R_{\nu'}$ .



#### p is above the top boundary of $R_{v'}$ :

Here, in the path between the left-point of  $R_{\nu}$  and the point p,

- no rectangle of the left partition will intersect,
- but rectangles in the right partition that may intersect.



Let v'' be the right child of v.

#### Simple case

### p is above $R_{v''}$ :

Join the left-point of  $R_{\nu}$  and the point p by an L-path, and The process stops.

Let v'' be the right child of v.

#### Simple case

p is above  $R_{v''}$ :

Join the left-point of  $R_v$  and the point p by an L-path, and The process stops.

#### The other case:

p is below  $R_{v''}$ :

Here,  $R_{v''}$  may or may not intersect the L-path from  $R_v$  to the point p.



# p is below $R_{v''}$ :

Here,  $R_{v''}$  may or may not intersect the L-path from  $R_v$  to the point p.



Former case: Join left-point of  $R_{\nu}$  and the left-point of  $R_{\nu''}$ 

In both cases: Recurse with p and  $R_{v''}$ 

## Complexity Results

#### Result

The length of the path from  $R_r$  to p is  $O(\log n)$ .

- Traverse the tree to find a node *v* such that *p* and *q* are in the different side of the discriminant line of that node.
- Choose node v as the root r,
- Process QUERY $(p, R_r)$
- Process QUERY $(q, R_r)$

#### Complexity Results

Preprocessing:  $O(n \log n)$  for constructing  $\mathcal{T}$ .

Query:  $O(\log n)$ 

Space: O(1)