Probabilistic arguments in graph coloring

Talk at the CALDAM-2015, IIT-Kanpur, February 8, 2015

C R Subramanian

The Institute of Mathematical Sciences, Chennai.

Graph Colouring

- ▶ A proper vertex k-colouring of G = (V, E) is a labeled partition $V = V_1 \cup ... \cup V_k$ such that each V_i is an independent set in G.
- ▶ The *chromatic number* $\chi(G)$ is the minimum k such that G admits a proper vertex k-colouring.
- ▶ A proper edge k-colouring of G = (V, E) is a labeled partition $E = E_1 \cup ... \cup E_k$ such that each E_i is a matching in G.
- ▶ The chromatic index $\chi'(G)$ is the minimum k such that G admits a proper edge k-colouring.

Immediate bounds on $\chi(G)$ and $\chi'(G)$

- ▶ $\delta(G)$ minimum degree of G. $\Delta(G)$ maximum degree of G.
- $\chi(G) \leq \Delta(G) + 1.$
- ▶ $\chi(G) \le d(G) + 1$. d(G) degeneracy of G.
- ▶ degeneracy of $G = \max\{\delta(H) : H \subseteq G\}$. It is also the minimum value of the maximum out-degree of any acyclic orientation of G.
- planar graphs are 4-colorable and forests are 2-colorable.
- $\chi(G) \le c\Delta/\log \Delta$ if G is triangle-free.
- ▶ $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$ due to Vizing.

Complexity of $\chi(G)$ and $\chi'(G)$

- ▶ A d(G) + 1-coloring can be computed in linear time.
- ▶ An optimal $\chi(G)$ -coloring can be computed efficiently for bipartite, chordal and perfect graphs.
- ▶ NP-Complete to determine whether $\chi(G) \leq 3$ even if G is a 4-regular planar graph.
- For arbitrary G, $\chi(G)$ is notoriously hard to approximate. Not approximable within a ratio of $O(n^{\delta})$ for any fixed $\delta < 1$, unless NP = ZPP.
- ▶ NP-Complete to determine whether $\chi'(G) \leq 3$ even if G is a 3-regular graph.
- ▶ $\chi'(G) \in \{\Delta, \Delta + 1\}$ always but $\chi(G)$ can vary widely with respect to Δ .

acyclic vertex colorings

- ▶ An acyclic vertex k-colouring of G = (V, E) is a labeled partition $V = V_1 \cup \ldots \cup V_k$ such that (i) each V_i is independent, (ii) for every $i \neq j$, $G[V_i \cup V_j]$ is acyclic, i.e., no 2-colored cycle.
- ► The acyclic chromatic number a(G) is the minimum k such that G admits an acyclic vertex k-colouring.
- $f_a(\Delta) = \max\{a(G) : \Delta = \Delta(G)\}.$
- It can be shown that $f_a(\Delta) = O(\Delta^{4/3})$. Also, known that $f_a(\Delta) = \Omega(\Delta^{4/3}/(\log \Delta)^{1/3})$. (Alon, McDiarmid and Reed, 1991). By probabilistic arguments.

acyclic edge colorings

- ▶ An acyclic edge k-colouring of G = (V, E) is a labeled partition $E = M_1 \cup ... \cup M_k$ such that (i) each M_i is a matching, (ii) for every $i \neq j$, $M_i \cup M_i$ is acyclic, i.e., no 2-colored cycle.
- ► The acyclic chromatic index a'(G) is the minimum k such that G admits an acyclic edge k-colouring.
- $f_{a'}(\Delta) = \max\{a'(G) : \Delta = \Delta(G)\}.$
- ▶ It is known that $f_{a'}(\Delta) \le 64\Delta$. (Alon, McDiarmid and Reed, 1991). By probabilistic arguments.
- ▶ Conjecture : $a'(G) \le \Delta(G) + 2$ for every G.

star vertex colorings

- A star vertex k-colouring of G = (V, E) is a labeled partition $V = V_1 \cup ... \cup V_k$ such that (i) each V_i is independent, (ii) for every $i \neq j$, $G[V_i \cup V_j]$ is a collection of vertex disjoint stars, i.e., no 2-colored path on 4 vertices.
- ▶ The star chromatic number $\chi_s(G)$ is the minimum k such that G admits a star vertex k-colouring.
- $f_s(\Delta) = \max\{\chi_s(G) : \Delta = \Delta(G)\}.$
- It is known that $f_s(\Delta) = O(\Delta^{3/2})$. Also, known that $f_s(\Delta) = \Omega(\Delta^{3/2}/\sqrt{\log \Delta})$. (Fertin, Raspaud and Reed, 2004). By probabilistic arguments.

Applications

- acyclic vertex coloring models the optimal partitioning problem arising in a substitution based computation of a Hessian matrix.
- star vertex coloring models the optimal partitioning problem arising in a direct computation of a Hessian matrix.
- distace-2 coloring is closely related to the span of a radio-coloring of a graph and arises in mobile communication. Also, models the optimal partitioning problem arising in a direct computation of a Hessian matrix.

List Colorings:

- ▶ Given G = (V, E), $\mathcal{L} = \{L_u : u \in V\}$.
- ▶ A \mathcal{L} -coloring of G is a map $f(u) \in L_u$ (for every u) such that $\{f(u)\}_u$ is a proper vertex coloring of G.
- ▶ Choice number $ch(G) = \text{minimum } k \text{ such that } G \text{ admits a } \mathcal{L}\text{-coloring for every } \mathcal{L} \text{ satisfying } |L_u| \geq k \text{ for every } u.$
- $\chi(G) \leq ch(G)$ always.
- ▶ $\exists f : \mathcal{N} \to \mathcal{N}$ such that $ch(G) \leq f(\chi(G))$ for every G?
- ▶ Answer is NO. Example : $ch(K_{n,n}) = \Theta(\ln n)$.
- ▶ $ch(G) \le c\chi(\ln n)$ for every G with n = |V(G)|. By probabilistic arguments.
- $ch(G) \leq d(G) + 1$ always.
- ▶ $\exists f : \mathcal{N} \to \mathcal{N}$ such that $ch(G) \geq g(d(G))$ for every G? Answer is YES. By probabilistic arguments. Noga Alon.

Oriented colorings

- ▶ an oriented graph \vec{G} is an orientation of some undirected G.
- ▶ A \vec{H} -coloring of \vec{G} is a homomorphism $h: V(\vec{G}) \to V(\vec{H})$ satisfying $(u, v) \in E(\vec{G}) \implies (h(u), h(v)) \in E(\vec{H})$.
- oriented chromatic number $\chi_o(\vec{G}) = \text{minimum } k \text{ such that } \vec{G}$ is \vec{H} -colorable for some \vec{H} on k vertices.
- oriented chromatic number $\chi_o(G) = \max_{\vec{G}} \{\chi_o(\vec{G})\}.$
- $d = \Delta(G)$. k = degeneracy of G.
- ▶ $\chi_o(G) \le d^3(6d)^d$ for any G (structural arguments, by CRS).
- ▶ $\chi_o(G) \le 2d^2 2^d$ for any G (prob. arguments, Kostochka, Sopena, Zhu).
- ▶ $\chi_o(G) \le 16kd2^k$ for any G (prob. arguments, Aravind and CRS).

Probabilistic arguments

- ► To prove : every *G* is colorable (in some fashion) using *k* colors.
- ▶ Choose a random coloring $\{f(u)\}_u$.
- ▶ Prove that f(.) is a coloring of desired type with positive probability.

- ► To prove : *G* is not always colorable (in some fashion) using *k* colors.
- Choose a random graph G.
- ▶ Prove that *G* is not colorable with *k* colors with positive probability.
- Use: tools and results from probability theory.

Probabilistic arguments in general

- Ω-Universe.
- ▶ To prove : there exists a $x \in \Omega$ satisfying a property P.
- ▶ Method : Fix a probability space (Ω, μ) .
- ▶ Choose a random $\omega \in \Omega$.
- Establish that $Pr(\omega \text{ satisfies } P) > 0$.
- •
- Deduce the desired conclusion.
- Use: tools and results from probability theory.

Existence of a subgraph with large cochromatic number

- ▶ cochromatic numbre z(G) is the minimum k such that V can be partitioned into $V = V_1 \cup ... \cup V_k$ such that each $G[V_i]$ is either a clique or an independent set.
- ▶ $z(G) \le \chi(G)$ always but can vary widely.
- Example : $z(K_n) = 1$ but $\chi(K_n) = n$.
- ▶ Possible to have $H \subseteq G$ with Z(H) > Z(G).
- $Z^*(G) = \max_{H \subseteq G} Z(H).$
- Alon, Krivelevich, Sudakov JGT-1997.
- ▶ For any G, $Z^*(G) \ge \frac{t}{4(\log_2 t)} \cdot [1 o(1)]$ where $t = \chi(G)$.
- Proof by probabilistic arguments.

•

Proof of Existence of a subgraph

- ▶ Claim 1 : Either $z(G) \ge \frac{t}{\ln t}$ or \exists a subgraph $G_1 = (V_1, E_1)$ satisfying $|V_1| \le t^2$ and $\chi(G_1) \ge t \cdot [1 o(1)]$.
- ▶ Proof : Suppose $z(G) < \frac{t}{\ln t}$.
- $V = (I_1 \cup \ldots \cup I_k) \cup (C_1 \cup \ldots \cup C_l). \ z(G) = k + l.$
- $V_1 = C_1 \cup \ldots \cup C_l. \ |V_1| < t^2/(\ln t). \ G_1 = G[V_1].$
- $t \leq \chi(G_1) + k \leq \chi(G_1) + \frac{t}{\ln t}.$
- ▶ H uniformly chosen random subgraph of G_1 .
- ► Claim 2 : $z(H) \ge \left(\frac{1}{4} o(1)\right) \cdot \frac{t}{\log_2 t}$ almost surely.
- Establishes the AKS theorem. the bound is nearly tight
- ▶ $z^*(G) \le (2 + o(1)) \cdot \frac{n}{\log_2 n}$ for every G on n vertices.
- ▶ For $G = K_t$, the lower and upper bounds are within a constant multiplicative factor.

Proof of Claim 2

- ▶ Probability that H has a clique of size at most $4(\log_2 t)$ is :
- $\leq {t^2 \choose 4(\log_2 t)} \cdot 2^{-{4(\log_2 t) \choose 2}} = o(1).$
- ▶ Probability that $\exists U \subseteq V_1 : \delta(G_1[U]) \ge 4(\log_2 t)$ and H[U]) is independent is :
- $\sum_{k>4(\log_2 t)} {t^2 \choose k} \cdot 2^{-2k(\log_2 t)} = o(1).$
- •
- ▶ with probability 1 o(1), for every U such that H[U] is independent, we have $\chi(G_1[U]) \le 4(\log_2 t)$.
- ► $t[1-o(1)] \le \chi(G_1) \le z(H) \cdot 4(\log_2 t)$.
- ▶ almost surely, $z(H) \ge \left(\frac{1}{4} o(1)\right) \cdot \frac{t}{\log_2 t}$.

Proof of $\chi_o(G) \leq 16kd2^k$

- Due to NRA and CRS based on the one due to Kostochka, Sopena and Zhu.
- ▶ Claim : \exists a tournament T = (U, A) on $t = 16kd2^k$ vertices satisfying : for every ordered sequence $\vec{x} = (x_1, \dots, x_i)$ of at most k vertices and for every tuple $\vec{a} \in \{IN, OUT\}^i$, there are at least kd + 1 other vertices in U each having their orientations into (x_1, \dots, x_i) governed by a.

 \blacktriangleright

- ▶ Fix an k-degenerate ordering $(v_n, ..., v_2, v_1)$ of V.
- Color the vertices in the reverse order with colors f(v_i) ∈ U subject to maintaining always :
- ▶ the partial coloring $f(v_1), \ldots, f(v_i)$ is always a T-coloring.
- ▶ For each v_j with j > i, all neighbors of v_j in $\{v_1, \ldots, v_i\}$ are distinctly colored.
- one can extend the coloring iteratively using Claim.

Proof of Claim

- ▶ Choose uniformly at random a tournament T on $t = 16kd2^k$ vertices.
- ▶ Given \vec{x} and \vec{a} , $X_{\vec{x},\vec{a}}$ = number of vertices in U having their orientations into \vec{x} governed by \vec{a} .
- ▶ $X_{\vec{x},\vec{a}}$ is the sum of t-i iid indicator variables.
- $E[X_{\vec{x},\vec{a}}] = (t-i)2^{-i} \ge (t-d)2^{-d}.$
- ▶ $\Pr(X_{\vec{x},\vec{a}} \leq kd) \leq e^{-(3.75)kd}$.
- ▶ $\Pr(\exists \vec{x}, \vec{a}: X_{\vec{x}, \vec{a}} \leq kd) \leq d \cdot {t \choose d} \cdot 2^d \cdot e^{-(3.75)kd} < 1.$
- ▶ $\Pr(\exists \vec{x}, \vec{a}: X_{\vec{x}, \vec{a}} \ge kd + 1) > 0.$

Lovasz Local Lemma

- ▶ $\mathcal{A} = \{A_1, \dots, A_m\}$ bad events.
- ▶ For each i, A_i is mutually independent of all but those in $\mathcal{F}_i \subseteq \mathcal{A} \setminus \{A_i\}$.
- ▶ Suppose $\{y_i : 0 \le y_i < 1\}$ are reals such that
- ▶ for each i, $\mathbf{Pr}(A_i) \leq y_i \prod_{A_j \in \mathcal{F}_i} (1 y_j)$.
- ▶ Then, $\mathbf{Pr}\left(\wedge_{i}\overline{A_{i}}\right) \geq \prod_{i}(1-y_{i}) > 0$.
- Need to choose suitable bad events.
- ▶ Need to properly choose of *y_i*'s.

Bounds on acyclic chromatic numbers

- Weaker bound $f_a(d) \le 16d^{3/2}$ is presented.
- $x = 16d^{3/2}$ number of colors.
- ▶ Choose $f: V \rightarrow [x]$ uniformly randomly.
- ▶ Type 1 : For every $uv \in E$, E_{uv} denotes f(u) = f(v).
- ▶ Type (2, k): For every even cycle C of length 2k, $E_{C,2k}$ denotes C is properly bicolored.
- ▶ $Pr(E_{uv}) = \frac{1}{x}$; $Pr(E_{C,2k}) \le 1/x^{2k-2}$.
- ► Each event on r vertices is independent of all but at most rd events of Type 1 and at most rd^{2k-1} events of Type (2, k).
- ► Choose $y_E = \frac{2}{x}$ if E is of Type 1 and $y_E = \left(\frac{2}{x}\right)^{2k-2}$ if E is of Type (2, k).
- inequalities can be verified to be satisfied.
- ► Conclusion : *G* is acyclically colorable using *x* colors.

Stronger and tight bounds on acyclic chromatic numbers

- ▶ Due to Alon, McDiarmid and Reed, RSA'91.
- ▶ a non-adjacent pair (u, v) is a special pair if they share more than $d^{2/3}$ common neighbors.
- $x = Cd^{4/3}$ number of colors.
- ▶ Choose $f: V \rightarrow [x]$ uniformly randomly.
- ▶ Type 1 : For every $uv \in E$, E_{uv} denotes f(u) = f(v).
- ▶ Type 2 : For every path $P = (u_0, u_1, u_2, u_3, u_4)$ of length 4, E_P denotes $f(u_0) = f(u_2) = f(u_4)$ and $f(u_1) = f(u_3)$.
- ▶ Type 3: For every induced cycle $C = (u_1, u_2, u_3, u_4, u_1)$ of length 4 with neither (v_1, v_3) nor (v_2, v_4) being a special pair, let E_C denote $f(u_1) = f(u_3)$ and $f(u_2) = f(u_4)$.
- ▶ Type 4 : for every special pair (u, v), let $E_{u,v}$ denote f(u) = f(v).
- ▶ absence of events of each of these types implies *f* is a proper cyclic coloring of *G*.
- ▶ applying LLL, one can deduce that $a(G) \le Cd^{4/3}$.

Generalization - forbidden subgraph colorings

- ▶ j − positive integer.
- \triangleright \mathcal{F} family of connected j-colorable graphs H more than j vertices each.
- (j, \mathcal{F}) -subgraph coloring :
- lacksquare a partition $V=V_1\cup\ldots\cup V_s$ such that
 - (1) Each V_i is independent.
 - (2) union of any j color classes induces a subgraph which is free of any member of \mathcal{F} .
- ▶ (j, \mathcal{F}) -chromatic number $\chi_{j,\mathcal{F}}(G) = \text{minimum number } s$ of colors that guarantees the existence of such a coloring.
- $\chi_{j,\mathcal{F}}(G) \leq Cd^{\frac{k-1}{k-j}}$ for every G;
- $k = \min\{|V(H)| : H \in \mathcal{F}\}.$
- ▶ Due to Aravind and CRS, JGT-2011.

Bounds on forbidden subgraph colorings

- ▶ Bounds on (j, k)-colorings :
 - ▶ j, k positive integers with $j \le k$.
 - G arbitrary graph with $d = \Delta(G)$.
 - ightharpoonup C = C(j,k).
 - $\lambda_{j,k}^{con}(G) \leq \lceil Cd^{\frac{k}{k+1-j}} \rceil.$
- ▶ Bounds on (j, \mathcal{F}) -subgraph colorings :
 - ightharpoonup j and $\mathcal F$ as defined before.
 - ▶ $k = \min\{|V(H)| : H \in \mathcal{F}\}; j \le k 1.$
 - G arbitrary graph with $d = \Delta(G)$; D = D(j, k 1).
 - $\chi_{j,\mathcal{F}}(G) \leq \lceil Dd^{\frac{k-1}{k-j}} \rceil = \lceil Dd^{1+\frac{j-1}{k-j}} \rceil.$

Specializations

• star chromatic number $\chi_s(G)$:

$$j = 2$$
, $\mathcal{F} = \{P_4\}$, $k = 4$;

$$\chi_s(G) = O(d^{3/2}) =$$
 the bound mentioned before.

▶ distance-2 chromatic number $\chi_{d2}(G)$:

$$j = 2$$
, $\mathcal{F} = \{P_3\}$, $k = 3$;

$$\chi_{s}(G) = O(d^{2}) =$$
the bound mentioned before.

• acyclic chromatic number $\chi_s(G)$:

$$j = 2$$
, $\mathcal{F} = \{C_4, C_6, \ldots\}$, $k = 4$;

 $\chi_s(G) = O(d^{3/2}) =$ weaker than the bound mentioned before.

Nearly tight bounds for the case j = 2

- Due to Aravind and CRS EJC-2013.
- ▶ Tight bounds on $(2, \mathcal{F})$ -subgraph colorings :
 - ► F family of connected bipartite graphs H on 3 or more vertices.

 - G arbitrary graph with $d = \Delta(G)$;
 - $ightharpoonup C = C(\mathcal{F}).$
 - $\chi_{2,\mathcal{F}}(G) \leq \lceil Cd^{\frac{m}{m-1}} \rceil = \lceil Cd^{1+\frac{1}{m-1}} \rceil.$
- ▶ Acyclic vertex coloring = $(2, \{C_4, C_6, ...\})$ -subgraph coloring.
- ▶ $a(d) = O(d^{4/3})$ = the bound mentioned before.
- $\lambda_b^{frug}(G) = \text{least } k \text{ such that } G \text{ can be properly } k\text{-colored}$ with each k having at most k neighbors colored the same.

How good are the bounds for the case j = 2

- ▶ Tightness of bounds on $(2, \mathcal{F})$ -subgraph colorings :
- Due to AS (EJC-2013);
 - ▶ \mathcal{F} family of connected bipartite graphs H on 3 or more vertices.

 - ► For infinitely many values of *d*,
 - ▶ there are graphs G having maximum degree d and
 - $\chi_{2,\mathcal{F}}(G) = \Omega\left(\frac{d^{\frac{m}{m-1}}}{(\log d)^{1/(m-1)}}\right).$
 - ▶ Proof based on analyzing G(n, p) for suitably chosen p.
- Acyclic vertex coloring $f_a(d) = \Omega\left(\frac{d^{4/3}}{(\log d)^{1/3}}\right)$ = the lower bound mentioned before.
- ▶ star vertex coloring $f_s(d) = \Omega\left(\frac{d^{3/2}}{\sqrt{\log d}}\right)$ = the lower bound mentioned before.

How good are the bounds for $\chi_2^{frug}(G)$

- ▶ Proof of : this bound is tight upto a $\sqrt{\ln d}$ factor.
- ▶ Consider $G \in \mathcal{G}(n,p)$ with $p = 6 \left(\frac{\ln n}{n}\right)^{1/3}$.
- expected degree $\mu \approx 6 \left(n^{2/3} (\ln n)^{1/3} \right)$.
- ▶ $\Pr(\frac{\mu}{2} \le d \le 2\mu) \to 1 \text{ as } n \to \infty.$
- ▶ Fix any partition $V = V_1 \cup ... V_s$ with $s \le n/3$.
- Remove at most two vertices from each V_i and further split each part to
- ▶ Get a collection $(W_1, ..., W_r)$ $(r \ge n/9)$ with $|W_i| = 3$ for each i:
- ▶ $G[W_i \cup W_j]$ has maximum degree less than 3 for every $i \neq j$.
- ► $\Pr(\chi_2^{frug}(G) \le n/3) \le n^n (1-p^3)^{\binom{n/9}{2}} = o(1).$
- with prob. approaching 1, $\chi_2^{frug}(G) > n/3$ and $\Delta(G) \leq 2\mu$.
- ▶ for infinitely many values of d, there are G with $\chi_2^{frug}(G) \ge C \frac{d^{3/2}}{(\ln d)^{1/2}}$.

Further Generalization - forbidding several families

- ▶ $\mathcal{P} = \{(j_1, \mathcal{F}_1), \dots, (j_l, \mathcal{F}_l)\}.$
- ► *P*-subgraph coloring :
- ▶ a partition $V = V_1 \cup \ldots \cup V_s$ such that
 - (1) Each V_i is independent.
 - (2) for each $i \leq l$, union of any j_i color classes induces a subgraph which is free of any member of \mathcal{F}_i .
- $k_i = \min\{|V(H)| : H \in \mathcal{F}_i\}; D = D(\mathcal{P}).$
- ▶ \mathcal{P} -forbidden chromatic number $\chi_{\mathcal{P}}(G) = \text{minimum number } s$ of colors that guarantees the existence of such a coloring.
- $\qquad \qquad \chi_{\mathcal{P}}(G) \leq \lceil Dd^{\max_i \frac{k_i 1}{k_i j_i}} \rceil.$

Generalization - forbidden subgraph edge colorings

- j − positive integer.
- ▶ \mathcal{F} family of connected graphs H such that $\chi'(H) \leq j$ and j < |E(H)|.
- (j, \mathcal{F}) -subgraph edge coloring :
- ▶ a partition $E = E_1 \cup ... \cup E_s$ such that
 - (1) Each E_i is a matching.
 - (2) union of any j color classes forms a subgraph which is free of any member of \mathcal{F} .
- if j < |E(H)|, then there is always one such coloring.
- ▶ (j, \mathcal{F}) -chromatic index $\chi'_{j,\mathcal{F}}(G)$ = minimum number s of colors that guarantees the existence of such an edge coloring.

Bounds on forbidden subgraph edge colorings

- \triangleright j and \mathcal{F} as defined before.
- $\theta(j,\mathcal{F}) = \max_{H \in \mathcal{F}} \frac{|V(H)| 2}{|E(H)| j}.$
- ▶ G arbitrary graph with $d = \Delta(G)$; $C = C(\mathcal{F})$.
- $\qquad \qquad \chi'_{j,\mathcal{F}}(G) \leq \lceil Cd^{\max\{\theta,1\}} \rceil.$
- ► Corollary :
- \triangleright j and \mathcal{F} as before.
- $D = D(\mathcal{F}) = \min\{|E(H)| |V(H)| : H \in \mathcal{F}\}.$
- ▶ Suppose $j \le D + 2$. Then, for $C = C(\mathcal{F})$,
- $\qquad \chi'_{i,\mathcal{F}}(G) \leq \lceil Cd \rceil.$

Specializations

- ▶ Given *G* with $d = \Delta(G)$, O(d) colors suffice to
- ensure the existence of proper edge colorings such that
 - union of any 2 color classes is acyclic acycic edge coloring.
 - union of any 3 color classes is outerplanar.
 - union of any 4 color classes is a partial 2-tree.
 - union of any 5 color classes is planar.
 - union of any k + 2 color classes is a partial k-tree, provided k > 2.
 - union of any $(k^2 + k + 2)/2$ color classes is a k-colorable graph.
 - union of any $(k^2 k + 2)/2$ color classes is a k-degenerate graph.
 - union of any 2g + 3 color classes is a graph of genus at most g.
- ▶ In fact, all of these requirements can be simultaneously met.

List chromatic numbers

- ▶ For any G, $ch(G) \le c\chi(G)(\ln n)$.
- ▶ proved by looking at a simple random truncation of each list obtained by choosing uniformly at random a χ -partition of $\cup_u L_u$.
- suffices to show that each truncated list is non-empty and lists for adjacent vertices are disjoint with positive probability.
- Improved by CRS (CPC-2007)
- ▶ For any G, $\chi(G) \le c\chi(G) \left(\ln \left(\frac{n}{\chi} \right) + 1 \right)$.
- based on extending and generalizing the prob. proof arguments of
- ▶ Alon worked out for a very special class of graphs.
- ► The random pruning has to take into account the sizes of color classes of a fixed optimal coloring. Such a choice was obtained.
- ► The result can be extended to list versions of hereditary chromatic numbers, list versions of hypergraph chromatic numbers, etc.

Algorithmic issues

- constructibility: The recent breakthrough of Gabor and Tardos can be applied to get a randomized algorithm with an EXPECTED polynomial running time to produce a (j, F)-subgraph coloring matching the upper bounds mentioned.
- This, for example, produces the first poly time algorithms matching the bounds for such coloring notions as acyclic vertex coloring, acyclic edge coloring, etc.
- ▶ Focus on improved bounds on (j, \mathcal{F}) -subgraph colorings for some special classes of graphs.
- ▶ Some specific questions in this direction are being pursued.

Thank You