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Graph Colouring

I A proper vertex k-colouring of G = (V ,E )
is a labeled partition V = V1 ∪ . . . ∪ Vk

such that each Vi is an independent set in G .

I The chromatic number χ(G ) is the minimum k such that G
admits a proper vertex k-colouring.

I A proper edge k-colouring of G = (V ,E )
is a labeled partition E = E1 ∪ . . . ∪ Ek

such that each Ei is a matching in G .

I The chromatic index χ′(G ) is the minimum k such that G
admits a proper edge k-colouring.



Immediate bounds on χ(G ) and χ′(G )

I δ(G ) – minimum degree of G . ∆(G ) – maximum degree of G .

I χ(G ) ≤ ∆(G ) + 1.

I χ(G ) ≤ d(G ) + 1. d(G ) – degeneracy of G .

I degeneracy of G = max{δ(H) : H ⊆ G}. It is also the
minimum value of the maximum out-degree of any acyclic
orientation of G .

I planar graphs are 4-colorable and forests are 2-colorable.

I χ(G ) ≤ c∆/ log ∆ if G is triangle-free.

I ∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1 due to Vizing.



Complexity of χ(G ) and χ′(G )

I A d(G ) + 1-coloring can be computed in linear time.

I An optimal χ(G )-coloring can be computed efficiently for
bipartite, chordal and perfect graphs.

I NP-Complete to determine whether χ(G ) ≤ 3 even if G is a
4-regular planar graph.

I For arbitrary G , χ(G ) is notoriously hard to approximate. Not
approximable within a ratio of O(nδ) for any fixed δ < 1,
unless NP = ZPP.

I NP-Complete to determine whether χ′(G ) ≤ 3 even if G is a
3-regular graph.

I χ′(G ) ∈ {∆,∆ + 1} always but χ(G ) can vary widely with
respect to ∆.



acyclic vertex colorings

I An acyclic vertex k-colouring of G = (V ,E )
is a labeled partition V = V1 ∪ . . . ∪ Vk

such that (i) each Vi is independent, (ii) for every i 6= j ,
G [Vi ∪ Vj ] is acyclic, i.e., no 2-colored cycle.

I The acyclic chromatic number a(G ) is the minimum k such
that G admits an acyclic vertex k-colouring.

I fa(∆) = max{a(G ) : ∆ = ∆(G )}.
I It can be shown that fa(∆) = O(∆4/3). Also, known that

fa(∆) = Ω(∆4/3/(log ∆)1/3). (Alon, McDiarmid and Reed,
1991). By probabilistic arguments.



acyclic edge colorings

I An acyclic edge k-colouring of G = (V ,E )
is a labeled partition E = M1 ∪ . . . ∪Mk

such that (i) each Mi is a matching, (ii) for every i 6= j ,
Mi ∪Mj is acyclic, i.e., no 2-colored cycle.

I The acyclic chromatic index a′(G ) is the minimum k such
that G admits an acyclic edge k-colouring.

I fa′(∆) = max{a′(G ) : ∆ = ∆(G )}.
I It is known that fa′(∆) ≤ 64∆. (Alon, McDiarmid and Reed,

1991). By probabilistic arguments.

I Conjecture : a′(G ) ≤ ∆(G ) + 2 for every G .



star vertex colorings

I A star vertex k-colouring of G = (V ,E )
is a labeled partition V = V1 ∪ . . . ∪ Vk

such that (i) each Vi is independent, (ii) for every i 6= j ,
G [Vi ∪ Vj ] is a collection of vertex disjoint stars, i.e., no
2-colored path on 4 vertices.

I The star chromatic number χs(G ) is the minimum k such
that G admits a star vertex k-colouring.

I fs(∆) = max{χs(G ) : ∆ = ∆(G )}.
I It is known that fs(∆) = O(∆3/2). Also, known that

fs(∆) = Ω(∆3/2/
√

log ∆). (Fertin, Raspaud and Reed, 2004).
By probabilistic arguments.



Applications

I acyclic vertex coloring models the optimal partitioning
problem arising in a substitution based computation of a
Hessian matrix.

I star vertex coloring models the optimal partitioning problem
arising in a direct computation of a Hessian matrix.

I distace-2 coloring is closely related to the span of a
radio-coloring of a graph and arises in mobile communication.
Also, models the optimal partitioning problem arising in a
direct computation of a Hessian matrix.



List Colorings :

I Given G = (V ,E ), L = {Lu : u ∈ V }.
I A L-coloring of G is a map f (u) ∈ Lu (for every u) such that
{f (u)}u is a proper vertex coloring of G .

I Choice number ch(G ) = minimum k such that G admits a
L-coloring for every L satisfying |Lu| ≥ k for every u.

I χ(G ) ≤ ch(G ) always.

I ∃f : N → N such that ch(G ) ≤ f (χ(G )) for every G ?

I Answer is NO. Example : ch(Kn,n) = Θ(ln n).

I ch(G ) ≤ cχ(ln n) for every G with n = |V (G )|. By
probabilistic arguments.

I ch(G ) ≤ d(G ) + 1 always.

I ∃f : N → N such that ch(G ) ≥ g(d(G )) for every G ?
Answer is YES. By probabilistic arguments. Noga Alon.



Oriented colorings

I an oriented graph ~G is an orientation of some undirected G .

I A ~H-coloring of ~G is a homomorphism h : V (~G )→ V (~H)
satisfying (u, v) ∈ E (~G ) =⇒ (h(u), h(v)) ∈ E (~H).

I oriented chromatic number χo(~G ) = minimum k such that ~G
is ~H-colorable for some ~H on k vertices.

I oriented chromatic number χo(G ) = max~G{χo(~G )}.
I d = ∆(G ). k = degeneracy of G .

I χo(G ) ≤ d3(6d)d for any G (structural arguments, by CRS).

I χo(G ) ≤ 2d22d for any G (prob. arguments, Kostochka,
Sopena, Zhu).

I χo(G ) ≤ 16kd2k for any G (prob. arguments, Aravind and
CRS).



Probabilistic arguments

I To prove : every G is colorable (in some fashion) using k
colors.

I Choose a random coloring {f (u)}u.

I Prove that f (.) is a coloring of desired type with positive
probability.

I

I To prove : G is not always colorable (in some fashion) using k
colors.

I Choose a random graph G .

I Prove that G is not colorable with k colors with positive
probability.

I Use : tools and results from probability theory.



Probabilistic arguments in general

I Ω-Universe.

I To prove : there exists a x ∈ Ω satisfying a property P.

I

I Method : Fix a probability space (Ω, µ).

I Choose a random ω ∈ Ω.

I Establish that Pr(ω satisfies P) > 0.

I

I Deduce the desired conclusion.

I Use : tools and results from probability theory.



Existence of a subgraph with large cochromatic number

I cochromatic numbre z(G ) is the minimum k such that V can
be partitioned into V = V1 ∪ . . . ∪ Vk such that each G [Vi ] is
either a clique or an independent set.

I z(G ) ≤ χ(G ) always but can vary widely.

I Example : z(Kn) = 1 but χ(Kn) = n.

I Possible to have H ⊆ G with Z (H) > Z (G ).

I Z ∗(G ) = maxH⊆G Z (H).

I Alon, Krivelevich, Sudakov - JGT-1997.

I For any G , Z ∗(G ) ≥ t
4(log2 t)

· [1− o(1)] where t = χ(G ).

I Proof by probabilistic arguments.

I



Proof of Existence of a subgraph

I Claim 1 : Either z(G ) ≥ t
ln t or ∃ a subgraph G1 = (V1,E1)

satisfying |V1| ≤ t2 and χ(G1) ≥ t · [1− o(1)].

I

I Proof : Suppose z(G ) < t
ln t .

I V = (I1 ∪ . . . ∪ Ik) ∪ (C1 ∪ . . . ∪ Cl). z(G ) = k + l .

I V1 = C1 ∪ . . . ∪ Cl . |V1| < t2/(ln t). G1 = G [V1].

I t ≤ χ(G1) + k ≤ χ(G1) + t
ln t .

I

I H - uniformly chosen random subgraph of G1.

I Claim 2 : z(H) ≥
(
1
4 − o(1)

)
· t
log2 t

almost surely.

I Establishes the AKS theorem. the bound is nearly tight

I z∗(G ) ≤ (2 + o(1)) · n
log2 n

for every G on n vertices.

I For G = Kt , the lower and upper bounds are within a
constant multiplicative factor.



Proof of Claim 2

I Probability that H has a clique of size at most 4(log2 t) is :

I ≤
( t2

4(log2 t)

)
· 2−(4(log2 t)

2 ) = o(1).

I

I Probability that ∃U ⊆ V1 : δ(G1[U]) ≥ 4(log2 t) and H[U]) is
independent is :

I
∑

k≥4(log2 t)
(t2
k

)
· 2−2k(log2 t) = o(1).

I

I with probability 1− o(1), for every U such that H[U] is
independent, we have χ(G1[U]) ≤ 4(log2 t).

I t[1− o(1)] ≤ χ(G1) ≤ z(H) · 4(log2 t).

I almost surely, z(H) ≥
(
1
4 − o(1)

)
· t
log2 t

.



Proof of χo(G ) ≤ 16kd2k

I Due to NRA and CRS based on the one due to Kostochka,
Sopena and Zhu.

I Claim : ∃ a tournament T = (U,A) on t = 16kd2k vertices
satisfying : for every ordered sequence ~x = (x1, . . . , xi ) of at
most k vertices and for every tuple ~a ∈ {IN,OUT}i , there are
at least kd + 1 other vertices in U each having their
orientations into (x1, . . . , xi ) governed by a.

I

I Fix an k-degenerate ordering (vn, . . . , v2, v1) of V .

I Color the vertices in the reverse order with colors f (vi ) ∈ U
subject to maintaining always :

I the partial coloring f (v1), . . . , f (vi ) is always a T -coloring.

I For each vj with j > i , all neighbors of vj in {v1, . . . , vi} are
distinctly colored.

I one can extend the coloring iteratively using Claim.



Proof of Claim

I Choose uniformly at random a tournament T on t = 16kd2k

vertices.

I Given ~x and ~a, X~x ,~a = number of vertices in U having their
orientations into ~x governed by ~a.

I X~x ,~a is the sum of t − i iid indicator variables.

I E [X~x ,~a] = (t − i)2−i ≥ (t − d)2−d .

I Pr(X~x ,~a ≤ kd) ≤ e−(3.75)kd .

I Pr(∃~x ,~a : X~x ,~a ≤ kd) ≤ d ·
(t
d

)
· 2d · e−(3.75)kd < 1.

I Pr(∃~x ,~a : X~x ,~a ≥ kd + 1) > 0.



Lovasz Local Lemma

I A = {A1, . . . ,Am} – bad events.

I For each i , Ai is mutually independent of all but those in
Fi ⊆ A \ {Ai}.

I Suppose {yi : 0 ≤ yi < 1} are reals such that

I for each i , Pr(Ai ) ≤ yi
∏

Aj∈Fi
(1− yj).

I Then, Pr
(
∧iAi

)
≥

∏
i (1− yi ) > 0.

I Need to choose suitable bad events.

I Need to properly choose of yi ’s.



Bounds on acyclic chromatic numbers

I Weaker bound fa(d) ≤ 16d3/2 is presented.

I x = 16d3/2 - number of colors.

I Choose f : V → [x ] uniformly randomly.

I Type 1 : For every uv ∈ E , Euv denotes f (u) = f (v).

I Type (2, k) : For every even cycle C of length 2k, EC ,2k

denotes C is properly bicolored.

I Pr(Euv ) = 1
x ; Pr(EC ,2k) ≤ 1/x2k−2.

I Each event on r vertices is independent of all but at most rd
events of Type 1 and at most rd2k−1 events of Type (2, k).

I Choose yE = 2
x if E is of Type 1 and yE =

(
2
x

)2k−2
if E is of

Type (2, k).

I inequalities can be verified to be satisfied.

I Conclusion : G is acyclically colorable using x colors.



Stronger and tight bounds on acyclic chromatic numbers

I Due to Alon, McDiarmid and Reed, RSA’91.

I a non-adjacent pair (u, v) is a special pair if they share more
than d2/3 common neighbors.

I x = Cd4/3 - number of colors.

I Choose f : V → [x ] uniformly randomly.

I Type 1 : For every uv ∈ E , Euv denotes f (u) = f (v).

I Type 2 : For every path P = (u0, u1, u2, u3, u4) of length 4,
EP denotes f (u0) = f (u2) = f (u4) and f (u1) = f (u3).

I Type 3 : For every induced cycle C = (u1, u2, u3, u4, u1) of
length 4 with neither (v1, v3) nor (v2, v4) being a special pair,
let EC denote f (u1) = f (u3) and f (u2) = f (u4).

I Type 4 : for every special pair (u, v), let Eu,v denote
f (u) = f (v).

I absence of events of each of these types implies f is a proper
cyclic coloring of G .

I applying LLL, one can deduce that a(G ) ≤ Cd4/3.



Generalization - forbidden subgraph colorings

I j – positive integer.

I F – family of connected j-colorable graphs H more than j
vertices each.

I (j ,F)-subgraph coloring :

I a partition V = V1 ∪ . . . ∪ Vs such that

(1) Each Vi is independent.
(2) union of any j color classes induces a subgraph which is free of

any member of F .

I (j ,F)-chromatic number χj ,F (G ) = minimum number s of
colors that guarantees the existence of such a coloring.

I χj ,F (G ) ≤ Cd
k−1
k−j for every G ;

I k = min{|V (H)| : H ∈ F}.
I Due to Aravind and CRS, JGT-2011.



Bounds on forbidden subgraph colorings

I Bounds on (j , k)-colorings :
I j , k – positive integers with j ≤ k .
I G – arbitrary graph with d = ∆(G ).
I C = C (j , k).

I χcon
j,k (G ) ≤ dCd

k
k+1−j e.

I Bounds on (j ,F)-subgraph colorings :
I j and F as defined before.
I k = min{|V (H)| : H ∈ F}; j ≤ k − 1.
I G – arbitrary graph with d = ∆(G ) ; D = D(j , k − 1).

I χj,F (G ) ≤ dDd
k−1
k−j e = dDd1+ j−1

k−j e.



Specializations

I star chromatic number χs(G ) :

j = 2, F = {P4}, k = 4;

χs(G ) = O(d3/2) = the bound mentioned before.

I distance-2 chromatic number χd2(G ) :

j = 2, F = {P3}, k = 3;

χs(G ) = O(d2) = the bound mentioned before.

I acyclic chromatic number χs(G ) :

j = 2, F = {C4,C6, . . .}, k = 4;

χs(G ) = O(d3/2) = weaker than the bound mentioned before.



Nearly tight bounds for the case j = 2

I Due to Aravind and CRS - EJC-2013.

I Tight bounds on (2,F)-subgraph colorings :

I F – family of connected bipartite graphs H on 3 or more
vertices.

I m = min{|E (H)| : H ∈ F};
I G – arbitrary graph with d = ∆(G ) ;
I C = C (F).
I χ2,F (G ) ≤ dCd

m
m−1 e = dCd1+ 1

m−1 e.

I Acyclic vertex coloring = (2, {C4,C6, . . .})-subgraph coloring.

I a(d) = O(d4/3) = the bound mentioned before.

I χfrug
b (G ) = least k such that G can be properly k-colored

with each u having at most b neighbors colored the same.

I χfrug
b (d) = max{χfrug

b (G ) : ∆(G ) = d} = O(d (b+1)/b).



How good are the bounds for the case j = 2

I Tightness of bounds on (2,F)-subgraph colorings :
I Due to AS (EJC-2013);

I F – family of connected bipartite graphs H on 3 or more
vertices.

I m = min{|E (H)| : H ∈ F};
I For infinitely many values of d ,
I there are graphs G having maximum degree d and

I χ2,F (G ) = Ω
(

d
m

m−1

(log d)1/(m−1)

)
.

I Proof based on analyzing G (n, p) for suitably chosen p.

I Acyclic vertex coloring fa(d) = Ω
(

d4/3

(log d)1/3

)
= the lower

bound mentioned before.

I star vertex coloring fs(d) = Ω
(

d3/2
√
log d

)
= the lower bound

mentioned before.



How good are the bounds for χfrug
2 (G )

I Proof of : this bound is tight upto a
√

ln d factor.

I Consider G ∈ G(n, p) with p = 6
(
ln n
n

)1/3
.

I expected degree µ ≈ 6
(
n2/3(ln n)1/3

)
.

I Pr(µ2 ≤ d ≤ 2µ)→ 1 as n→∞.

I Fix any partition V = V1 ∪ . . .Vs with s ≤ n/3.

I Remove at most two vertices from each Vi and further split
each part to

I Get a collection (W1, . . . ,Wr ) (r ≥ n/9) with |Wi | = 3 for
each i :

I G [Wi ∪Wj ] has maximum degree less than 3 for every i 6= j .

I Pr(χfrug
2 (G ) ≤ n/3) ≤ nn(1− p3)(n/92 ) = o(1).

I with prob. approaching 1, χfrug
2 (G ) > n/3 and ∆(G ) ≤ 2µ.

I for infinitely many values of d , there are G with

χfrug
2 (G ) ≥ C d3/2

(ln d)1/2
.



Further Generalization - forbidding several families

I P = {(j1,F1), . . . , (jl ,Fl)}.
I P-subgraph coloring :

I a partition V = V1 ∪ . . . ∪ Vs such that

(1) Each Vi is independent.
(2) for each i ≤ l , union of any ji color classes induces a subgraph

which is free of any member of Fi .

I ki = min{|V (H)| : H ∈ Fi}; D = D(P).

I P-forbidden chromatic number χP(G ) = minimum number s
of colors that guarantees the existence of such a coloring.

I χP(G ) ≤ dDdmaxi
ki−1

ki−ji e.



Generalization - forbidden subgraph edge colorings

I j – positive integer.

I F – family of connected graphs H such that
χ′(H) ≤ j and j < |E (H)|.

I (j ,F)-subgraph edge coloring :

I a partition E = E1 ∪ . . . ∪ Es such that

(1) Each Ei is a matching.
(2) union of any j color classes forms a subgraph which is free of

any member of F .

I if j < |E (H)|, then there is always one such coloring.

I (j ,F)-chromatic index χ′j ,F (G ) = minimum number s of
colors that guarantees the existence of such an edge coloring.



Bounds on forbidden subgraph edge colorings

I j and F as defined before.

I θ(j ,F) = maxH∈F
|V (H)|−2
|E(H)|−j .

I G – arbitrary graph with d = ∆(G ) ; C = C (F).

I χ′j ,F (G ) ≤ dCdmax{θ,1}e.

I Corollary :

I j and F as before.

I D = D(F) = min{|E (H)| − |V (H)| : H ∈ F}.
I Suppose j ≤ D + 2. Then, for C = C (F),

I χ′j ,F (G ) ≤ dCde.



Specializations

I Given G with d = ∆(G ), O(d) colors suffice to

I ensure the existence of proper edge colorings such that

I union of any 2 color classes is acyclic – acycic edge coloring.
I union of any 3 color classes is outerplanar.
I union of any 4 color classes is a partial 2-tree.
I union of any 5 color classes is planar.
I union of any k + 2 color classes is a partial k-tree, provided

k ≥ 2.
I union of any (k2 + k + 2)/2 color classes is a k-colorable graph.
I union of any (k2 − k + 2)/2 color classes is a k-degenerate

graph.
I union of any 2g + 3 color classes is a graph of genus at most g .

I In fact, all of these requirements can be simultaneously met.



List chromatic numbers
I For any G , ch(G ) ≤ cχ(G )(ln n).
I proved by looking at a simple random truncation of each list

obtained by choosing uniformly at random a χ-partition of
∪uLu.

I suffices to show that each truncated list is non-empty and lists
for adjacent vertices are disjoint with positive probability.

I Improved by CRS (CPC-2007)

I For any G , χ(G ) ≤ cχ(G )
(

ln
(

n
χ

)
+ 1
)

.

I based on extending and generalizing the prob. proof
arguments of

I Alon worked out for a very special class of graphs.
I The random pruning has to take into account the sizes of

color classes of a fixed optimal coloring. Such a choice was
obtained.

I The result can be extended to list versions of hereditary
chromatic numbers, list versions of hypergraph chromatic
numbers, etc.



Algorithmic issues

I constructibility : The recent breakthrough of Gabor and
Tardos can be applied to get a randomized algorithm with an
EXPECTED polynomial running time to produce a
(j ,F)-subgraph coloring matching the upper bounds
mentioned.

I This, for example, produces the first poly time algorithms
matching the bounds for such coloring notions as acyclic
vertex coloring, acyclic edge coloring, etc.

I Focus on improved bounds on (j ,F)-subgraph colorings for
some special classes of graphs.

I Some specific questions in this direction are being pursued.



Thank You


