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Graph Colouring

v

A proper vertex k-colouring of G = (V/, E)
is a labeled partition V =V; U ... UV,
such that each V; is an independent set in G.

The chromatic number x(G) is the minimum k such that G
admits a proper vertex k-colouring.

A proper edge k-colouring of G = (V, E)

is a labeled partition E = E; U ... U Eg

such that each E; is a matching in G.

The chromatic index x'(G) is the minimum k such that G
admits a proper edge k-colouring.



Immediate bounds on x(G) and \'(G)

d(G) — minimum degree of G. A(G) — maximum degree of G.
» x(G) < A(G) + 1.
» x(G) <d(G)+1. d(G) — degeneracy of G.
» degeneracy of G = max{d(H) : H C G}. It is also the
minimum value of the maximum out-degree of any acyclic
orientation of G.

» planar graphs are 4-colorable and forests are 2-colorable.
» x(G) < cA/log A if G is triangle-free.
» A(G) < X/(G) < A(G) + 1 due to Vizing.



Complexity of x(G) and \'(G)

v

A d(G) + 1-coloring can be computed in linear time.

An optimal x(G)-coloring can be computed efficiently for
bipartite, chordal and perfect graphs.

NP-Complete to determine whether x(G) < 3 evenif G is a
4-regular planar graph.

For arbitrary G, x(G) is notoriously hard to approximate. Not
approximable within a ratio of O(n°) for any fixed ¢ < 1,
unless NP = ZPP.

NP-Complete to determine whether x/(G) < 3 even if G is a
3-regular graph.

X'(G) € {A, A+ 1} always but x(G) can vary widely with
respect to A.



acyclic vertex colorings

» An acyclic vertex k-colouring of G = (V, E)
is a labeled partition V = V; U ... U V,
such that (/) each V; is independent, (ii) for every i # j,
G[V; U Vj] is acyclic, i.e., no 2-colored cycle.

» The acyclic chromatic number a(G) is the minimum k such
that G admits an acyclic vertex k-colouring.

» f2(A) = max{a(G) : A = A(G)}.

> It can be shown that f,(A) = O(A*/3). Also, known that
f.(A) = Q(A*3/(log A)Y/3). (Alon, McDiarmid and Reed,
1991). By probabilistic arguments.



acyclic edge colorings

» An acyclic edge k-colouring of G = (V, E)
is a labeled partition E = My U...U M
such that (/) each M; is a matching, (ii) for every i # j,
M; U M; is acyclic, i.e., no 2-colored cycle.

» The acyclic chromatic index a'(G) is the minimum k such
that G admits an acyclic edge k-colouring.

» fy(A) =max{d(G) : A = A(G)}.

» It is known that fy(A) < 64A. (Alon, McDiarmid and Reed,
1991). By probabilistic arguments.

» Conjecture : 3'(G) < A(G) + 2 for every G.



star vertex colorings

v

A star vertex k-colouring of G = (V, E)

is a labeled partition V =V, U... U Vj

such that (/) each V; is independent, (ii) for every i # j,
G[V; U Vj] is a collection of vertex disjoint stars, i.e., no
2-colored path on 4 vertices.

The star chromatic number xs(G) is the minimum k such
that G admits a star vertex k-colouring.

fs(A) = max{xs(G) : A = A(G)}.

It is known that f;(A) = O(A3/?). Also, known that

f.(A) = Q(A3/2/\/log A). (Fertin, Raspaud and Reed, 2004).
By probabilistic arguments.



Applications

» acyclic vertex coloring models the optimal partitioning
problem arising in a substitution based computation of a
Hessian matrix.

» star vertex coloring models the optimal partitioning problem
arising in a direct computation of a Hessian matrix.

» distace-2 coloring is closely related to the span of a
radio-coloring of a graph and arises in mobile communication.
Also, models the optimal partitioning problem arising in a
direct computation of a Hessian matrix.



List Colorings :

» Given G = (V,E), L={L,:ue V}.
» A L-coloring of G is a map f(u) € L, (for every u) such that
{f(u)}, is a proper vertex coloring of G.

» Choice number ch(G) = minimum k such that G admits a
L-coloring for every L satisfying |L,| > k for every u.

» x(G) < ch(G) always.

» 3f : N — N such that ch(G) < f(x(G)) for every G ?

» Answer is NO. Example : ch(Kp ) = ©(Inn).

» ch(G) < cx(Inn) for every G with n = |V(G)|. By
probabilistic arguments.

» ch(G) < d(G) + 1 always.

» 3f : N — N such that ch(G) > g(d(G)) for every G ?
Answer is YES. By probabilistic arguments. Noga Alon.



Oriented colorings

» an oriented graph G is an orientation of some undirected G.

» A H-coloring of G is a_ homomorphism h : V(é)ﬁ V(H)
satisfying (u,v) € E(G) = (h(u), h(v)) € E(H).

> oriented chromatic number Xo(G) = minimum k such that G
is H-colorable for some H on k vertices.

» oriented chromatic number x,(G) = maxé{xo(é)}.

» d = A(G). k = degeneracy of G.

> Xo(G) < d3(6d)? for any G (structural arguments, by CRS).

> Xo(G) < 2d?29 for any G (prob. arguments, Kostochka,
Sopena, Zhu).

> Xo(G) < 16kd2* for any G (prob. arguments, Aravind and
CRS).



Probabilistic arguments

» To prove : every G is colorable (in some fashion) using k
colors.

» Choose a random coloring {f(u)},.

» Prove that f(.) is a coloring of desired type with positive
probability.

» To prove : G is not always colorable (in some fashion) using k
colors.

» Choose a random graph G.

» Prove that G is not colorable with k colors with positive
probability.

» Use : tools and results from probability theory.



Probabilistic arguments in general

» (-Universe.

> To prove : there exists a x € Q2 satisfying a property P.

» Method : Fix a probability space (€2, ).
» Choose a random w € €.
» Establish that Pr(w satisfies P) > 0.

» Deduce the desired conclusion.

> Use : tools and results from probability theory.



Existence of a subgraph with large cochromatic number

» cochromatic numbre z(G) is the minimum k such that V can
be partitioned into V = Vj U... U Vj such that each G[V/] is
either a clique or an independent set.

» z(G) < x(G) always but can vary widely.

» Example : z(K,) = 1 but x(K,) = n.

> Possible to have H C G with Z(H) > Z(G).

» Z*(G) = maxycg Z(H).

» Alon, Krivelevich, Sudakov - JGT-1997.

» Forany G, Z*(G) > ) - [1 — o(1)] where t = x(G).

t
(logy t
» Proof by probabilistic arguments.



Proof of Existence of a subgraph

r 3 a subgraph G; = (V4, E1)

» Claim 1 : Either z(G) > £ o
dx(G) > t-[1—o(L)].

satisfying | V1| < t2 an

» Proof : Suppose z(G) < .

» V=(hU...UlL)U(GU...UG). z(G) =k + .
» Vi=GU...UG. V| <t?/(Int). G = G[V4].
» t < x(G1)+ k < x(G1) + 5.

» H - uniformly chosen random subgraph of Gj.

» Claim 2 : z(H) > (3 — o(1)) - Iog :

» Establishes the AKS theorem. the bound is nearly tight

» z2°(G) < (2+0(1)) -

» For G = K, the lower and upper bounds are within a
constant multiplicative factor.

almost surely.

Iog — for every G on n vertices.



Proof of Claim 2

v

v

Probability that H has a clique of size at most 4(log, t) is :

2 _ (4(logp t)
< (e ) 2 = o(1).

Probability that 3U C V; : §(G1[U]) > 4(log, t) and H[U]) is
independent is :

2
D k>4(log, t) (%) -272Klee2 ) = o(1),

with probability 1 — o(1), for every U such that H[U] is
independent, we have x(G1[U]) < 4(log, t).

t{l — o(1)] < x(G1) < z(H) - 4(log, ).
almost surely, z(H) > (1 — o(1)) - e -




Proof of xo(G) < 16kd2*

>

Due to NRA and CRS based on the one due to Kostochka,
Sopena and Zhu.

Claim : 3 a tournament T = (U, A) on t = 16kd2* vertices
satisfying : for every ordered sequence X = (xi, ..., X;) of at
most k vertices and for every tuple 3 € {IN, OUT}', there are
at least kd + 1 other vertices in U each having their
orientations into (xi,...,X;) governed by a.

Fix an k-degenerate ordering (vy,..., v, vq) of V.

Color the vertices in the reverse order with colors f(v;) € U
subject to maintaining always :

the partial coloring f(v1),...,f(v;) is always a T-coloring.
For each v; with j > i, all neighbors of v; in {vi,...,v;} are
distinctly colored.

one can extend the coloring iteratively using Claim.



Proof of Claim

» Choose uniformly at random a tournament T on t = 16kd2*
vertices.

» Given X and 3, Xy 5 = number of vertices in U having their
orientations into X governed by 3.

» Xz 5 is the sum of t — i iid indicator variables.
» E[Xzz] = (t - 27" > (t —d)27¢.
> Pr(Xzs < kd) < e"(375)kd,

> Pr(3%,3: Xgz < kd) < d - (}) 27 e BTk <1,
» Pr(3X,3: Xzg5> kd +1) >0



Lovasz Local Lemma

v

A ={A1,...,An} — bad events.

» For each i, A; is mutually independent of all but those in
Fi C A\ {A}.

» Suppose {y; : 0 < y; < 1} are reals such that

» for each i, Pr(A;) <y; HAje]-'[(l - ).
> Then, Pr(AA) > [[;(1—y) > O

» Need to choose suitable bad events.

» Need to properly choose of y;'s.



Bounds on acyclic chromatic numbers

» Weaker bound f,(d) < 16d%/? is presented.

» x = 16d%? - number of colors.

» Choose f : V — [x] uniformly randomly.

» Type 1: For every uv € E, E,, denotes f(u) = f(v).

» Type (2, k) : For every even cycle C of length 2k, Ec o
denotes C is properly bicolored.

> Pr(Euv) = % ; Pr(ECVQk) < 1/X2k—2.

» Each event on r vertices is independent of all but at most rd
events of Type 1 and at most rd?~1 events of Type (2, k).

» Choose yr = % if Eis of Type 1 and yr = (%)2k_2 if E is of
Type (2, k).

> inequalities can be verified to be satisfied.

» Conclusion : G is acyclically colorable using x colors.



Stronger and tight bounds on acyclic chromatic numbers

vV V. Vv v

Due to Alon, McDiarmid and Reed, RSA'91.

a non-adjacent pair (u, v) is a special pair if they share more
than d?/3 common neighbors.

x = Cd*/3 - number of colors.

Choose f : V — [x] uniformly randomly.

Type 1 : For every uv € E, E,, denotes f(u) = f(v).

Type 2 : For every path P = (ug, u1, uz, us, us) of length 4,
Ep denotes f(up) = f(u2) = f(us) and f(u1) = f(u3).

Type 3 : For every induced cycle C = (u1, up, us, us, uy) of
length 4 with neither (vq, v3) nor (v2, v4) being a special pair,
let Ec denote f(u1) = f(u3) and f(u2) = f(us).

Type 4 : for every special pair (u, v), let E,, denote

f(u) =f(v).

absence of events of each of these types implies f is a proper
cyclic coloring of G.

applying LLL, one can deduce that a(G) < Cd*/3.



Generalization - forbidden subgraph colorings

> j — positive integer.

v

F — family of connected j-colorable graphs H more than j
vertices each.

v

(j, F)-subgraph coloring :
a partition V = V4 U...U V; such that

(1) Each V; is independent.
(2) union of any j color classes induces a subgraph which is free of
any member of F.

v

v

(j, F)-chromatic number x; 7(G) = minimum number s of
colors that guarantees the existence of such a coloring.

X, F(G) < Cd for every G;
k =min{|V(H)|: H € F}.
Due to Aravind and CRS, JGT-2011.

v

v

v



Bounds on forbidden subgraph colorings

» Bounds on (j, k)-colorings :

> j, k — positive integers with j < k.

» G — arbitrary graph with d = A(G).
C = C(j, k).
X(6) < [CdmiT].

v

v

» Bounds on (j, F)-subgraph colorings :
» j and F as defined before.
k=min{|V(H)|: He F}, j < k-—-1.
» G — arbitrary graph with d = A(G) ; D = D(j, k — 1).
x.#(6) < [Dd=7 = [Dd* 1.

v

v



Specializations

» star chromatic number xs(G) :
J=2, F={Ps}, k=4,

xs(G) = O(d®?) = the bound mentioned before.

» distance-2 chromatic number x42(G) :
j=2F={P:}, k=3

Xs(G) = O(d?) = the bound mentioned before.
» acyclic chromatic number xs(G) :
j=2 F={CyGCs, ...} k=4

xs(G) = O(d*/?) = weaker than the bound mentioned before.



Nearly tight bounds for the case j = 2

» Due to Aravind and CRS - EJC-2013.
» Tight bounds on (2, F)-subgraph colorings :

» F — family of connected bipartite graphs H on 3 or more
vertices.
» m=min{|E(H)|: H e F};
» G — arbitrary graph with d = A(G) ;
» C=C(F).
> x2.7(G) < [Cdn™r] = [Cd* 7o,
» Acyclic vertex coloring = (2,{C, Ge, . . .})-subgraph coloring.

» a(d) = O(d*/3) = the bound mentioned before.

> er”g(G) = least k such that G can be properly k-colored

with each u having at most b neighbors colored the same.
> X[¥(d) = max{x["6(G) : A(G) = d} = O(d(b+1)/b),



How good are the bounds for the case j = 2

» Tightness of bounds on (2, F)-subgraph colorings :
» Due to AS (EJC-2013);
» F — family of connected bipartite graphs H on 3 or more
vertices.
m=min{|E(H)|: H e F};
For infinitely many values of d,
there are graphs G having maximum degree d and
x2.7(G) = Q (W)-
Proof based on analyzing G(n, p) for suitably chosen p.

d4/3
(log d)1/3

v

v

v

v

v

» Acyclic vertex coloring f,(d) = Q (

) = the lower
bound mentioned before.

d3/2
V0ogd

» star vertex coloring fs(d) = Q (
mentioned before.

) = the lower bound



How good are the bounds for x2"8(G)

>

Proof of : this bound is tight upto a v/In d factor.
Consider G € G(n, p) with p =16 ('”T”)l/3.
expected degree  ~ 6 (n2/3(|n n)1/3).

Pr(5 <d <2u)—1asn— oo.

Fix any partition V = V4 U... Vs with s < n/3.

Remove at most two vertices from each V; and further split
each part to

Get a collection (Wi, ..., W,) (r > n/9) with |W;| = 3 for
each /i :

G[W; U W] has maximum degree less than 3 for every i # j.
Pr(x3*(G) < n/3) < n"(1 - p*)("%") = o(1).

with prob. approaching 1, x7*6(G) > n/3 and A(G) < 2.
for infinitely many values of d, there are G with

fru 3/2
X2 g(G) > CW'



Further Generalization - forbidding several families

v

P = {(jlafl)) sy (j/vf/)}-
P-subgraph coloring :
a partition V = V3 U... U V; such that

(1) Each V; is independent.
(2) for each i </, union of any j; color classes induces a subgraph
which is free of any member of F;.

v

v

v

ki = min{|V(H)|: H € F;}; D = D(P).
P-forbidden chromatic number x»(G) = minimum number s
of colors that guarantees the existence of such a coloring.

ki— 1
xp(G) < [Dd™ 531,

v

v



Generalization - forbidden subgraph edge colorings

> j — positive integer.

v

F — family of connected graphs H such that
X'(H) <j and j < |E(H)|.

v

(j, F)-subgraph edge coloring :
a partition £ = E; U ... U E; such that

(1) Each E; is a matching.
(2) union of any j color classes forms a subgraph which is free of
any member of F.

v

v

if j < |E(H)|, then there is always one such coloring.

v

(Jj, F)-chromatic index X} (G) = minimum number s of
colors that guarantees the existence of such an edge coloring.



Bounds on forbidden subgraph edge colorings

v

J and F as defined before.
. V(H)|-2
0(j, F) = maxper %
G — arbitrary graph with d = A(G) ; C = C(F).
X}}]:(G) < [Cdmax{e,l}'|_

v

v

v

v

Corollary :

v

Jj and F as before.

D = D(F) =min{|E(H)| — |V(H)|: H € F}.
Suppose j < D + 2. Then, for C = C(F),

X 7(G) < [Cd].

v

v

v



Specializations

» Given G with d = A(G), O(d) colors suffice to

» ensure the existence of proper edge colorings such that

vV vy vV VvVYYy

vy

>

union of any 2 color classes is acyclic — acycic edge coloring.
union of any 3 color classes is outerplanar.

union of any 4 color classes is a partial 2-tree.

union of any 5 color classes is planar.

union of any k + 2 color classes is a partial k-tree, provided
k> 2.

union of any (k% + k +2)/2 color classes is a k-colorable graph.
union of any (k% — k +2)/2 color classes is a k-degenerate
graph.

union of any 2g + 3 color classes is a graph of genus at most g.

» In fact, all of these requirements can be simultaneously met.



List chromatic numbers

» For any G, ch(G) < cx(G)(Inn).

» proved by looking at a simple random truncation of each list
obtained by choosing uniformly at random a x-partition of
UuLy.

» suffices to show that each truncated list is non-empty and lists
for adjacent vertices are disjoint with positive probability.

» Improved by CRS (CPC-2007)

» Forany G, x(G) < cx(G) <In (%) + 1).

> based on extending and generalizing the prob. proof
arguments of

» Alon worked out for a very special class of graphs.

» The random pruning has to take into account the sizes of
color classes of a fixed optimal coloring. Such a choice was
obtained.

» The result can be extended to list versions of hereditary
chromatic numbers, list versions of hypergraph chromatic
numbers, etc.



Algorithmic issues

» constructibility : The recent breakthrough of Gabor and
Tardos can be applied to get a randomized algorithm with an
EXPECTED polynomial running time to produce a
(j, F)-subgraph coloring matching the upper bounds
mentioned.

» This, for example, produces the first poly time algorithms
matching the bounds for such coloring notions as acyclic
vertex coloring, acyclic edge coloring, etc.

» Focus on improved bounds on (j, F)-subgraph colorings for
some special classes of graphs.

» Some specific questions in this direction are being pursued.



Thank You



